ترغب بنشر مسار تعليمي؟ اضغط هنا

Social networks readily transmit information, albeit with less than perfect fidelity. We present a large-scale measurement of this imperfect information copying mechanism by examining the dissemination and evolution of thousands of memes, collectivel y replicated hundreds of millions of times in the online social network Facebook. The information undergoes an evolutionary process that exhibits several regularities. A memes mutation rate characterizes the population distribution of its variants, in accordance with the Yule process. Variants further apart in the diffusion cascade have greater edit distance, as would be expected in an iterative, imperfect replication process. Some text sequences can confer a replicative advantage; these sequences are abundant and transfer laterally between different memes. Subpopulations of the social network can preferentially transmit a specific variant of a meme if the variant matches their beliefs or culture. Understanding the mechanism driving change in diffusing information has important implications for how we interpret and harness the information that reaches us through our social networks.
194 - Chun-Yuen Teng , Yu-Ru Lin , 2011
The recording and sharing of cooking recipes, a human activity dating back thousands of years, naturally became an early and prominent social use of the web. The resulting online recipe collections are repositories of ingredient combinations and cook ing methods whose large-scale and variety yield interesting insights about both the fundamentals of cooking and user preferences. At the level of an individual ingredient we measure whether it tends to be essential or can be dropped or added, and whether its quantity can be modified. We also construct two types of networks to capture the relationships between ingredients. The complement network captures which ingredients tend to co-occur frequently, and is composed of two large communities: one savory, the other sweet. The substitute network, derived from user-generated suggestions for modifications, can be decomposed into many communities of functionally equivalent ingredients, and captures users preference for healthier variants of a recipe. Our experiments reveal that recipe ratings can be well predicted with features derived from combinations of ingredient networks and nutrition information.
As individuals communicate, their exchanges form a dynamic network. We demonstrate, using time series analysis of communication in three online settings, that network structure alone can be highly revealing of the diversity and novelty of the informa tion being communicated. Our approach uses both standard and novel network metrics to characterize how unexpected a network configuration is, and to capture a networks ability to conduct information. We find that networks with a higher conductance in link structure exhibit higher information entropy, while unexpected network configurations can be tied to information novelty. We use a simulation model to explain the observed correspondence between the evolution of a networks structure and the information it carries.
Before contributing new knowledge, individuals must attain requisite background knowledge or skills through schooling, training, practice, and experience. Given limited time, individuals often choose either to focus on few areas, where they build dee p expertise, or to delve less deeply and distribute their attention and efforts across several areas. In this paper we measure the relationship between the narrowness of focus and the quality of contribution across a range of both traditional and recent knowledge sharing media, including scholarly articles, patents, Wikipedia, and online question and answer forums. Across all systems, we observe a small but significant positive correlation between focus and quality.
The paper citation network is a traditional social medium for the exchange of ideas and knowledge. In this paper we view citation networks from the perspective of information diffusion. We study the structural features of the information paths throug h the citation networks of publications in computer science, and analyze the impact of various citation choices on the subsequent impact of the article. We find that citing recent papers and papers within the same scholarly community garners a slightly larger number of citations on average. However, this correlation is weaker among well-cited papers implying that for high impact work citing within ones field is of lesser importance. We also study differences in information flow for specific subsets of citation networks: books versus conference and journal articles, different areas of computer science, and different time periods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا