ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider imbalanced Fermi gases with strong attractive interactions, for which Cooper-pair formation plays an important role. The two-component mixtures consist either of identical fermionic atoms in two different hyperfine states, or of two diffe rent atomic species both occupying only a single hyperfine state. In both cases, the number of atoms for each component is allowed to be different, which leads to a spin imbalance, or spin polarization. Two different atomic species also lead to a mass imbalance. Imbalanced Fermi gases are relevant to condensed-matter physics, nuclear physics and astroparticle physics. They have been studied intensively in recent years, following their experimental realization in ultracold atomic Fermi gases. The experimental control in such a system allows for a systematic study of the equation of state and the phase diagram as a function of temperature, spin polarization and interaction strength. In this review, we discuss the progress in understanding strongly-interacting imbalanced Fermi gases, where a main goal is to describe the results of the highly controlled experiments. We start by discussing Feshbach resonances, after which we treat the imbalanced Fermi gas in mean-field theory to give an introduction to the relevant physics. We encounter several unusual superfluid phases, including phase separation, gapless Sarma superfluidity, and supersolidity. To obtain a more quantitative description of the experiments, we review also more sophisticated techniques, such as diagrammatic methods and the renormalization-group theory. We end the review by discussing two theoretical approaches to treat the inhomogeneous imbalanced Fermi gas, namely the Landau-Ginzburg theory and the Bogoliubov-de Gennes approach.
We theoretically study slow collisions of NH$_3$ molecules with He atoms, where we focus in particular on the observation of scattering resonances. We calculate state-to-state integral and differential cross sections for collision energies ranging fr om 10${}^{-4}$ cm$^{-1}$ to 130 cm$^{-1}$, using fully converged quantum close-coupling calculations. To describe the interaction between the NH${}_3$ molecules and the He atoms, we present a four-dimensional potential energy surface, based on an accurate fit of 4180 {it ab initio} points. Prior to collision, we consider the ammonia molecules to be in their antisymmetric umbrella state with angular momentum $j=1$ and projection $k=1$, which is a suitable state for Stark deceleration. We find pronounced shape and Feshbach resonances, especially for inelastic collisions into the symmetric umbrella state with $j=k=1$. We analyze the observed resonant structures in detail by looking at scattering wavefunctions, phase shifts, and lifetimes. Finally, we discuss the prospects for observing the predicted scattering resonances in future crossed molecular beam experiments with a Stark-decelerated NH$_3$ beam.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا