ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate a novel method for deterministic charging of InAs quantum dots embedded in photonic crystal nanoresonators using a unique vertical p-n-i-n junction within the photonic crystal membrane. Charging is confirmed by the observation of Zeema n splitting for magnetic fields applied in the Voigt configuration. Spectrally resolved photoluminescence measurements are complemented by polarization resolved studies that show the precise structure of the Zeeman quadruplet. Integration of quantum dots in nanoresonators strongly enhances far-field collection efficiency and paves the way for the exploitation of enhanced spin-photon interactions for fabrication of efficient quantum nodes in a scalable solid state platform.
The experimental investigation of spontaneously created vortices is of utmost importance for the understanding of quantum phase transitions towards a superfluid phase, especially for two dimensional systems that are expected to be governed by the Ber ezinski-Kosterlitz-Thouless physics. By means of time resolved near-field interferometry we track the path of such vortices, created at random locations in an exciton-polariton condensate under pulsed non-resonant excitation, to their final pinning positions imposed by the stationary disorder. We formulate a theoretical model that successfully reproduces the experimental observations.
We report on the observation of spontaneous coherent oscillations in a microcavity polariton bosonic Josephson junction. The condensation of exciton polaritons takes place under incoherent excitation in a disordered environment, where double potentia l wells tend to appear in the disordered landscape. Coherent oscillations set on at an excitation power well above the condensation threshold. The time resolved population and phase dynamics reveal the analogy with the AC Josephson effect. We have introduced a theoretical two-mode model to describe the observed effects, which allows us to explain how the different realizations of the pulsed experiment have a similar phase relation.
Singly quantized vortices have been already observed in many systems including the superfluid helium, Bose Einstein condensates of dilute atomic gases, and condensates of exciton polaritons in the solid state. Two dimensional superfluids carrying spi n are expected to demonstrate a different type of elementary excitations referred to as half quantum vortices characterized by a pi rotation of the phase and a pi rotation of the polarization vector when circumventing the vortex core. We detect half quantum vortices in an exciton-polariton condensate by means of polarization resolved interferometry, real space spectroscopy and phase imaging. Half quantum vortices coexist with single quantum vortices in our sample.
We report on time resolved measurements of the first order spatial coherence in an exciton polariton Bose-Einstein condensate. Long range spatial coherence is found to set in right at the onset of stimulated scattering, on a picosecond time scale. Th e coherence reaches its maximum value after the population and decays slower, staying up to a few hundreds of picoseconds. This behavior can be qualitatively reproduced, using a stochastic classical field model describing interaction between the polariton condensate and the exciton reservoir within a disordered potential.
Real and momentum space spectrally resolved images of microcavity polariton emission in the regime of condensation are investigated under non resonant excitation using a laser source with reduced intensity fluctuations on the timescale of the exciton lifetime. We observe that the polariton emission consists of many macroscopically occupied modes. Lower energy modes are strongly localized by the photonic potential disorder on a scale of few microns. Higher energy modes have finite k-vectors and are delocalized over 10-15 microns. All the modes exhibit long range spatial coherence comparable to their size. We provide a theoretical model describing the behavior of the system with the results of the simulations in good agreement with the experimental observations. We show that the multimode emission of the polariton condensate is a result of its nonequilibrium character, the interaction with the local photonic potential and the reduced intensity fluctuations of the excitation laser.
One of the most striking quantum effects in a low temperature interacting Bose gas is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its amazing features such as the persistence o f superflows and the quantization of the angular momentum of vortices. The achievement of Bose-Einstein condensation (BEC) in dilute atomic gases provided an exceptional opportunity to observe and study superfluidity in an extremely clean and controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons has now been reported several times. Polaritons are strongly interacting light-matter quasi-particles, naturally occurring in semiconductor microcavities in the strong coupling regime and constitute a very interesting example of composite bosons. Even though pioneering experiments have recently addressed the propagation of a fluid of coherent polaritons, still no conclusive evidence is yet available of its superfluid nature. In the present Letter, we report the observation of spontaneous formation of pinned quantised vortices in the Bose-condensed phase of a polariton fluid by means of phase and amplitude imaging. Theoretical insight into the possible origin of such vortices is presented in terms of a generalised Gross-Pitaevskii equation. The implications of our observations concerning the superfluid nature of the non-equilibrium polariton fluid are finally discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا