ترغب بنشر مسار تعليمي؟ اضغط هنا

We present details of a lattice study of infrared behaviour in SU(3) gauge theory with twelve massless fermions in the fundamental representation. Using the step-scaling method, we compute the coupling constant in this theory over a large range of sc ale. The renormalisation scheme in this work is defined by the ratio of Polyakov loops in the directions with different boundary conditions. We closely examine systematic effects, and find that they are dominated by errors arising from the continuum extrapolation. Our investigation suggests that SU(3) gauge theory with twelve flavours contains an infrared fixed point.
Incorporated with twisted boundary condition, Polyakov loop correlators can give a definition of the renormalized coupling. We employ this scheme for the step scaling method (with step size s = 2) in the search of conformal fixed point of SU(3) gauge theory with 12 massless flavors. Staggered fermion and plaquette gauge action are used in the lattice simulation with six different lattice sizes, L/a = 20, 16, 12, 10, 8 and 6. For the largest lattice size, L/a = 20, we used a large number of Graphics Processing Units (GPUs) and accumulated 3,000,000 trajectories in total. We found that the step scaling function sigma (u) is consistent with u in the low-energy region. This means the existence of conformal fixed point. Some details of our analysis and simulations will also be presented.
114 - Kenji Ogawa 2011
We propose a new method for Hybrid Monte Carlo (HMC) simulations with odd numbers of dynamical fermions on the lattice. It employs a different approach from polynomial or rational HMC. In this method, gamma-five hermiticity of the lattice Dirac opera tors is crucial and it can be applied to Wilson, domain-wall, and overlap fermions. We compare HMC simulations with two degenerate flavors and (1 + 1) degenerate flavors using optimal domain-wall fermions. The ratio of the efficiency, (number of accepted trajectories) / (simulation time), is about 3:2. The relation between pseudofermion action of chirally symmetric lattice fermions in four-dimensional(overlap) and five-dimensional(domain-wall) representation are also analyzed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا