ترغب بنشر مسار تعليمي؟ اضغط هنا

158 - K. Ishii , M. Fujita , T. Sasaki 2014
The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we comb ine x-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic x-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone center and deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the {Gamma}-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin-excitations (paramagnons) recently observed in hole-doped compounds even at high doping-levels.
We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of orbital excitations in KCuF3 . By performing the polarization analysis of the scattered photons, we disclose that the excitation between the eg orbitals and the excitations fro m t2g to eg exhibit distinct polarization dependence. The polarization dependence of the respective excitations is interpreted based on a phenomenological consideration of the symmetry of the RIXS process that yields a necessary condition for observing the excitations. In addition, we show that the orbital excitations are dispersionless within our experimental resolution.
340 - K. Ishii , M. Hoesch , T. Inami 2007
We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of high-Tc cuprates. Momentum-resolved charge excitations in the CuO2 plane are examined from parent Mott insulators to carrier-doped superconductors. The Mott gap excitation in u ndoped insulators is found to commonly show a larger dispersion along the [pi,pi] direction than the [pi,0] direction. On the other hand, the resonance condition displays material dependence. Upon hole doping, the dispersion of the Mott gap excitation becomes weaker and an intraband excitation appears as a continuum intensity below the gap at the same time. In the case of electron doping, the Mott gap excitation is prominent at the zone center and a dispersive intraband excitation is observed at finite momentum transfer.
Momentum dependent charge excitations of a two-leg ladder are investigated by resonant inelastic x-ray scattering of (La,Sr,Ca)14Cu24O41. In contrast to the case of a square lattice, momentum dependence of the Mott gap excitation of the ladder exhibi ts little change upon hole-doping, indicating the formation of hole pairs. Theoretical calculation based on a Hubbard model qualitatively explains this feature. In addition, experimental data shows intraband excitation as continuum intensity below the Mott gap and it appears at all the momentum transfers simultaneously. The intensity of the intraband excitation is proportional to the hole concentration of the ladder, which is consistent with optical conductivity measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا