ترغب بنشر مسار تعليمي؟ اضغط هنا

During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. However it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N larger than 500K, we find that the evolution of the SMBH binary is convergent, and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of SMBH binary settles into an orbit that is in a corotation resonance with the background rotating model, and the coalescence time is roughly few hundred Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host gal axy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the 3-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in an rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.
During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the the SMBH evolution is independent of N for an axis ratio of c/a=0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a=0.75.
We explore structure formation in the dark ages ($zsim 30-6$) using two well-known methods for initializing cosmological $N$-body simulations. Overall, both the Zeldovich approximation (za) and second order Lagrangian perturbation theory (lpt) are kn own to produce accurate present-day dark matter halo mass functions. However, since the lpt method drives more rapid evolution of dense regions, it increases the occurrence of rare massive objects -- an effect that is most pronounced at high redshift. We find that lpt produces more halos that could harbor Population III stars and their black hole remnants, and they produce them earlier. Although the differences between the lpt and za mass functions are nearly erased by $z=6$, this small boost to the number and mass of black holes more than doubles the reionized volume of the early Universe. We discuss the implications for reionization and massive black hole growth.
Observations of the Galactic Center (GC) have accumulated a multitude of forensic evidence indicating that several million years ago the center of the Milky Way galaxy was teaming with starforming and accretion-powered activity -- this paints a rathe r different picture from the GC as we understand it today. We examine a possibility that this epoch of activity could have been triggered by the infall of a satellite galaxy into the Milky Way which began at the redshift of 10 and ended few million years ago with a merger of the Galactic supermassive black hole with an intermediate mass black hole brought in by the inspiralling satellite.
We calculate the gravitational wave signal from the growth of 10 million solar mass supermassive black holes (SMBH) from the remnants of Population III stars. The assembly of these lower mass black holes is particularly important because observing SM BHs in this mass range is one of the primary science goals for the Laser Interferometer Space Antenna (LISA), a planned NASA/ESA mission to detect gravitational waves. We use high resolution cosmological N-body simulations to track the merger history of the host dark matter halos, and model the growth of the SMBHs with a semi-analytic approach that combines dynamical friction, gas accretion, and feedback. We find that the most common source in the LISA band from our volume consists of mergers between intermediate mass black holes and SMBHs at redshifts less than 2. This type of high mass ratio merger has not been widely considered in the gravitational wave community; detection and characterization of this signal will likely require a different technique than is used for SMBH mergers or extreme mass ratio inspirals. We find that the event rate of this new LISA source depends on prescriptions for gas accretion onto the black hole as well as an accurate model of the dynamics on a galaxy scale; our best estimate yields about 40 sources with a signal-to-noise ratio greater than 30 occur within a volume like the Local Group during SMBH assembly -- extrapolated over the volume of the universe yields roughly 500 observed events over 10 years, although the accuracy of this rate is affected by cosmic variance.
During the inspiral and merger of a binary black hole, gravitational radiation is emitted anisotropically due to asymmetries in the merger configuration. This anisotropic radiation leads to a gravitational wave kick, or recoil velocity, as large as ~ 4000 km/sec. We investigate the effect gravitational recoil has on the retention of intermediate mass black holes (IMBH) within Galactic globular clusters. Assuming that our current understanding of IMBH-formation is correct and yields an IMBH-seed in every globular cluster, we find a significant problem retaining low mass IMBHs (1000 $Msun$) in the typical merger-rich globular cluster environment. Given a uniform black hole spin distribution and orientation and a Kroupa IMF, we find that at most 3% of the globular clusters can retain an IMBH larger than 1000 $Msun$ today. For a population of black holes that better approximates mass loss from winds and supernovae, we find that 16% of globulars can retain an IMBH larger than 1000 $Msun$. Our calculations show that if there are black holes of mass $M > 60 Msun$ in a cluster, repeated IMBH-BH encounters will eventually eject a 1000 $Msun$ IMBH with greater than 30% probability. As a consequence, a large population of rogue black holes may exist in our Milky Way halo. We discuss the dynamical implications of this subpopulation, and its possible connection to ultraluminous X-ray sources (ULXs).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا