ترغب بنشر مسار تعليمي؟ اضغط هنا

Kickstarting Reionization with the First Black Holes: the effects of second-order perturbation theory in pre-reionization volumes

128   0   0.0 ( 0 )
 نشر من قبل Kelly Holley-Bockelmann
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore structure formation in the dark ages ($zsim 30-6$) using two well-known methods for initializing cosmological $N$-body simulations. Overall, both the Zeldovich approximation (za) and second order Lagrangian perturbation theory (lpt) are known to produce accurate present-day dark matter halo mass functions. However, since the lpt method drives more rapid evolution of dense regions, it increases the occurrence of rare massive objects -- an effect that is most pronounced at high redshift. We find that lpt produces more halos that could harbor Population III stars and their black hole remnants, and they produce them earlier. Although the differences between the lpt and za mass functions are nearly erased by $z=6$, this small boost to the number and mass of black holes more than doubles the reionized volume of the early Universe. We discuss the implications for reionization and massive black hole growth.



قيم البحث

اقرأ أيضاً

The feasibility of making highly redshifted HI 21-cm (rest frame) measurements from an early epoch of the Universe between the Dark Ages and Reionization (i.e., z>6 and nu<200 MHz) to probe the effects of feedback from the first stars and quasars is assessed in this paper. It may be possible to determine the distribution of hydrogen through the Universe and to constrain the birth of the first stars and black holes via HI tomography. Such observations may also place limits on the properties of Inflation and any exotic heating mechanisms before the first star formation begins (e.g., dark matter decay). The global (all-sky) HI signal after Recombination has distinct features at different frequencies between 30 and 200 MHz that changes as the relative balance between the CMB and spin temperatures changes due to the expansion of the Universe and the ignition of stars and/or black holes. A technology roadmap to approach these observations beginning with ground-based arrays and ending with a low frequency radio array on the lunar farside is described.
We present an analysis of the evolution of the Lyman-series forest into the epoch of reionization using cosmological radiative transfer simulations in a scenario where reionization ends late. We explore models with different midpoints of reionization and gas temperatures. We find that once the simulations have been calibrated to match the mean flux of the observed Lyman-$alpha$ forest at $4 < z < 6$, they also naturally reproduce the distribution of effective optical depths of the Lyman-$beta$ forest in this redshift range. We note that the tail of the largest optical depths that is most challenging to match corresponds to the long absorption trough of ULAS J0148+0600, which we have previously shown to be rare in our simulations. We consider the evolution of the Lyman-series forest out to higher redshifts, and show that future observations of the Lyman-$beta$ forest at $z>6$ will discriminate between different reionization histories. The evolution of the Lyman-$alpha$ and Lyman-$gamma$ forests are less promising as a tool for pushing studies of reionization to higher redshifts due to the stronger saturation and foreground contamination, respectively.
To investigate the potential abundance and impact of nuclear black holes (BHs) during reionization, we generate a neural network that estimates their masses and accretion rates by training it on 23 properties of galaxies harbouring them at $z=6$ in t he cosmological hydrodynamical simulation Massive-Black II. We then populate all galaxies in the simulation from $z=18$ to $z=5$ with BHs from this network. As the network allows to robustly extrapolate to BH masses below those of the BH seeds, we predict a population of faint BHs with a turnover-free luminosity function, while retaining the bright (and observed) BHs, and together they predict a Universe in which intergalactic hydrogen is $15%$ ionized at $z=6$ for a clumping factor of 5. Faint BHs may play a stronger role in H reionization without violating any observational constraints. This is expected to have an impact also on pre-heating and -ionization, which is relevant to observations of the 21 cm line from neutral H. We also find that BHs grow more efficiently at higher $z$, but mainly follow a redshift-independent galaxy-BH relation. We provide a power law parametrisation of the hydrogen ionizing emissivity of BHs.
162 - M. G. Santos 2009
While limited to low spatial resolution, the next generation low-frequency radio interferometers that target 21 cm observations during the era of reionization and prior will have instantaneous fields-of-view that are many tens of square degrees on th e sky. Predictions related to various statistical measurements of the 21 cm brightness temperature must then be pursued with numerical simulations of reionization with correspondingly large volume box sizes, of order 1000 Mpc on one side. We pursue a semi-numerical scheme to simulate the 21 cm signal during and prior to Reionization by extending a hybrid approach where simulations are performed by first laying down the linear dark matter density field, accounting for the non-linear evolution of the density field based on second-order linear perturbation theory as specified by the Zeldovich approximation, and then specifying the location and mass of collapsed dark matter halos using the excursion-set formalism. The location of ionizing sources and the time evolving distribution of ionization field is also specified using an excursion-set algorithm. We account for the brightness temperature evolution through the coupling between spin and gas temperature due to collisions, radiative coupling in the presence of Lyman-alpha photons and heating of the intergalactic medium, such as due to a background of X-ray photons. The hybrid simulation method we present is capable of producing the required large volume simulations with adequate resolution in a reasonable time so a large number of realizations can be obtained with variations in assumptions related to astrophysics and background cosmology that govern the 21 cm signal.
95 - Yi Mao 2014
The linear perturbation theory of inhomogeneous reionization (LPTR) has been developed as an analytical tool for predicting the global ionized fraction and large-scale power spectrum of ionized density fluctuations during reionization. In the origina l formulation of the LPTR, the ionization balance and radiative transfer equations are linearized and solved in Fourier space. However, the LPTRs approximation to the full solution of the radiative transfer equation is not straightforward to interpret, since the latter is most intuitively conceptualized in position space. To bridge the gap between the LPTR and the language of numerical radiative transfer, we present a new, equivalent, position-space formulation of the LPTR that clarifies the approximations it makes and facilitates its interpretation. We offer a comparison between the LPTR and the excursion-set model of reionization (ESMR), and demonstrate the built-in capability of the LPTR to explore a wide range of reionization scenarios, and to go beyond the ESMR in exploring scenarios involving X-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا