ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the rough surface effects on a two-dimensional chiral $k_x+ik_y$ superconductor. The atomic scale roughness at the surface is considered using the random $S$ matrix model. The roughness effects on the self-consistent order parameter, the s urface mass current and the surface density of states are studied using the quasi-classical theory. We find that the surface mass current is suppressed by the surface roughness. The surface density of states shows a quite similar behavior to that of superfluid ${}^3$He B phase. When the surface is specular, the surface Andreev bound states form a band which fills the bulk energy gap $Delta_{rm bulk}$. When the surface becomes diffusive, there occurs a sharp upper edge of the surface bound states band and there opens a sub-gap between the edge and the bulk energy gap. We show that this sub-gap is induced by the repulsion between the surface bound states and the propagating Bogoliubov quasi-particles through the second order process of roughness.
104 - S. Murakawa , Y. Wada , Y. Tamura 2010
The superfluid $^3$He B phase, one of the oldest unconventional fermionic condensates experimentally realized, is recently predicted to support Majorana fermion surface states. Majorana fermion, which is characterized by the equivalence of particle a nd antiparticle, has a linear dispersion relation referred to as the Majorana cone. We measured the transverse acoustic impedance $Z$ of the superfluid$^3$He B phase changing its boundary condition and found a growth of peak in $Z$ on a higher specularity wall. Our theoretical analysis indicates that the variation of $Z$ is induced by the formation of the cone-like dispersion relation and thus confirms the important feature of the Majorana fermion in the specular limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا