ترغب بنشر مسار تعليمي؟ اضغط هنا

Skyrmions, once a hypothesized field-theoretical object believed to describe the nature of elementary particles, became common sightings in recent years among several non-centrosymmetric metallic ferromagnets. For more practical applications of Skyrm ionic matter as carriers of information, thus realizing the prospect of Skyrmionics, it is necessary to have the means to create and manipulate Skyrmions individually. We show through extensive simulation of the Landau-Lifshitz-Gilbert equation that a circulating current imparted to the metallic chiral ferromagnetic system can create isolated Skyrmionic spin texture without the aid of external magnetic field.
We develop a theory of the magnetic field-induced formation of Skyrmion crystal state in chiral magnets in two spatial dimensions, motivated by the recent discovery of the Skyrmionic phase of magnetization in thin film of Fe$_{0.5}$Co$_{0.5}$Si and i n the A-phase of MnSi. Ginzburg-Landau functional of the chiral magnet re-written in the CP$^1$ representation is shown to be a convenient framework for the analysis of the Skyrmion states. Phase diagram of the model at zero temperature gives a sequence of ground states, helical spin $rightarrow$ Skyrme crystal $rightarrow$ ferromagnet, as the external field $B$ increases, in good accord with the thin-film experiment. In close analogy with Abrikosovs derivation of the vortex lattice solution in type-II superconductor, the CP$^1$ mean-field equation is solved and shown to reproduce the Skyrmion crystal state.
A recent experiment on the multiferroic BiMn$_2$O$_5$ compound under a strong applied magnetic field revealed a rich phase diagram driven by the coupling of magnetic and charge (dipolar) degrees of freedom. Based on the exchange-striction mechanism, we propose here a theoretical model with the intent to capture the interplay of the spin and dipolar moments in the presence of a magnetic field in BiMn$_2$O$_5$. Experimentally observed behavior of the dielectric constants, magnetic susceptibility, and the polarization is, for the most part, reproduced by our model. The critical behavior observed near the polarization reversal $(P=0)$ point in the phase diagram is interpreted as arising from the proximity to the critical end point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا