ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space $R^n$, the hyperbolic space $H^n$ and a Riemannian manifold $mathfrak{S^n}$ ($ngeq 3$) with the Schwarzschild metric to any Riemannian manifold $N$.
We use PDE methods as developed for the Liouville equation to study the existence of conformal metrics with prescribed singularities on surfaces with boundary, the boundary condition being constant geodesic curvature. Our first result shows that a di sk with two corners admits a conformal metric with constant Gauss curvature and constant geodesic curvature on its boundary if and only if the two corners have the same angle. In fact, we can classify all the solutions in a more general situation, that of the 2-sphere cut by two planes.
We examine the effects of stochastic input currents on the firing behavior of two excitable neurons coupled with fast excitatory synapses. In such cells (models), typified by the quadratic integrate and fire model, mutual synaptic coupling can cause sustained firing or oscillatory behavior which is necessarily antiphase. Additive Gaussian white noise can transiently terminate the oscillations, hence destroying the stable limit cycle. Further application of the noise may return the system to spiking activity. In a particular noise range, the transition times between the oscillating and the resting state are strongly asymmetric. We numerically investigate an approximate basin of attraction, A, of the periodic orbit and use Markov process theory to explain the firing behavior in terms of the probability of escape of trajectories from A
We develop analytical methods for nonlinear Dirac equations. Examples of such equations include Dirac-harmonic maps with curvature term and the equations describing the generalized Weierstrass representation of surfaces in three-manifolds. We provide the key analytical steps, i.e., small energy regularity and removable singularity theorems and energy identities for solutions.
Motivated by the supersymmetric extension of Liouville theory in the recent physics literature, we couple the standard Liouville functional with a spinor field term. The resulting functional is conformally invariant. We study geometric and analytic a spects of the resulting Euler-Lagrange equations, culminating in a blow up analysis.
Let $S$ be a Riemann surface obtained by deleting a finite number of points, called cusps, from a compact Riemann surface. Let $rho: pi_1(S)to Sl(n, mathbb{C})$ be a semisimple linear representation of $pi_1(S)$ which is unipotent near the cusps. We investigate various cohomologies associated to $rho$ of $bar S$ with degenerating coefficients $L_{rho}$ (considered as a local system -- a flat vector bundle, a Higgs bundle, or a $mathcal{D}$-module, depending on the context): the v{C}ech cohomology of $j_*L_{rho}$, the $L^2$-cohomology, the $L^2$-Dolbeault cohomology, and the $L^2$-Higgs cohomology, and the relationships between them. This paper is meant to be a part of the general program of studying cohomologies with degenerating coefficients on quasiprojective varieties and their Kahlerian generalizations. The general aim here is not restricted to the case of curves nor to the one of representations that are unipotent near the divisor. The purpose of this note therefore is to illuminate at this particular case where many of the (analytic and geometric) difficulties of the general case are not present what differences will appear when we consider unipotent harmonic bundles instead of Variations of Hodge Structures where the results are known.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا