ترغب بنشر مسار تعليمي؟ اضغط هنا

We study theoretically the minimal conductivity of monolayer graphene in the presence of Rashba spin-orbit coupling. The Rashba spin-orbit interaction causes the low-energy bands to undergo trigonal-warping deformation and for energies smaller than t he Lifshitz energy, the Fermi circle breaks up into parts, forming four separate Dirac cones. We calculate the minimal conductivity for an ideal strip of length $L$ and width $W$ within the Landauer--Buttiker formalism in a continuum and in a tight binding model. We show that the minimal conductivity depends on the relative orientation of the sample and the probing electrodes due to the interference of states related to different Dirac cones. We also explore the effects of finite system size and find that the minimal conductivity can be lowered compared to that of an infinitely wide sample.
The electric resistance between two arbitrary nodes on any infinite lattice structure of resistors that is a periodic tiling of space is obtained. Our general approach is based on the lattice Greens function of the Laplacian matrix associated with th e network. We present several non-trivial examples to show how efficient our method is. Deriving explicit resistance formulas it is shown that the Kagome, the diced and the decorated lattice can be mapped to the triangular and square lattice of resistors. Our work can be extended to the random walk problem or to electron dynamics in condensed matter physics.
94 - I. Hagymasi , A. Kormanyos , 2010
We calculate the phase, the temperature and the junction length dependence of the supercurrent for ballistic graphene Josephson-junctions. For low temperatures we find non-sinusoidal dependence of the supercurrent on the superconductor phase differen ce for both short and long junctions. The skewness, which characterizes the deviation of the current-phase relation from a simple sinusoidal one, shows a linear dependence on the critical current for small currents. We discuss the similarities and differences with respect to the classical theory of Josephson junctions, where the weak link is formed by a diffusive or ballistic metal. The relation to other recent theoretical results on graphene Josephson junctions is pointed out and the possible experimental relevance of our work is considered as well.
Results are presented for the electron current in gold chiral nanotubes (AuNTs). Starting from the band structure of (4,3) and (5,3) AuNTs, we find that the magnitude of the chiral currents are greater than those found in carbon nanotubes. We also ca lculate the associated magnetic flux inside the tubes and find this to be higher than the case of carbon nanotubes. Although (4,3) and (5,3) AuNTs carry transverse momenta of similar magnitudes, the low-bias magnetic flux carried by the former is far greater than that carried by the latter. This arises because the low-bias longitudinal current carried by a (4,3) AuNT is significantly smaller than that of a (5,3) AuNT.
56 - Gy. David , J. Cserti 2009
We derive a general and simple expression for the time-dependence of the position operator of a multi-band Hamiltonian with arbitrary matrix elements depending only on the momentum of the quasi-particle. Our result shows that in such systems the Zitt erbewegung like term related to a trembling motion of the quasi-particle, always appears in the position operator. Moreover, the Zitterbewegung is, in general, a multi-frequency oscillatory motion of the quasi-particle. We derive a few different expressions for the amplitude of the oscillatory motion including that related to the Berry connection matrix. We present several examples to demonstrate how general and versatile our result is.
We studied the energy levels of graphene based Andreev billiards consisting of a superconductor region on top of a monolayer graphene sheet. For the case of Andreev retro-reflection we show that the graphene based Andreev billiard can be mapped to th e normal metal-superconducting billiards with the same geometry. We also derived a semiclassical quantization rule in graphene based Andreev billiards. The exact and the semiclassically obtained spectrum agree very well both for the case of Andreev retro-reflection and specular Andreev reflection.
We study the dynamics of the electrons in a non-uniform magnetic field applied perpendicular to a graphene sheet in the low energy limit when the excitation states can be described by a Dirac type Hamiltonian. We show that as compared to the two-dime nsional electron gas (2DEG) snake states in graphene exibit peculiar properties related to the underlying dynamics of the Dirac fermions. The current carried by snake states is locally uncompensated even if the Fermi energy lies between the first non-zero energy Landau levels of the conduction and valence bands. The nature of these states is studied by calculating the current density distribution. It is shown that besides the snake states in finite samples surface states also exist.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا