ﻻ يوجد ملخص باللغة العربية
We study the dynamics of the electrons in a non-uniform magnetic field applied perpendicular to a graphene sheet in the low energy limit when the excitation states can be described by a Dirac type Hamiltonian. We show that as compared to the two-dimensional electron gas (2DEG) snake states in graphene exibit peculiar properties related to the underlying dynamics of the Dirac fermions. The current carried by snake states is locally uncompensated even if the Fermi energy lies between the first non-zero energy Landau levels of the conduction and valence bands. The nature of these states is studied by calculating the current density distribution. It is shown that besides the snake states in finite samples surface states also exist.
We study a model of a $p$-$n$ junction in single-layer graphene in the presence of a perpendicular magnetic field and spin-orbit interactions. By solving the relevant quantum-mechanical problem for a potential step, we determine the exact spectrum of
A pseudo-magnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron transport along this kink is governed by snake states that are characterized by a single propagation direction. Those pseudo-magnetic fields p
We analyze the nature of the single particle states, away from the Dirac point, in the presence of long-range charge impurities in a tight-binding model for electrons on a two-dimensional honeycomb lattice which is of direct relevance for graphene. F
Snake states and Aharonov-Bohm interferences are examples of magnetoconductance oscillations that can be observed in a graphene p-n junction. Even though they have already been reported in suspended and encapsulated devices including different geomet
Metal atomic chains have been reported to change their electronic or magnetic properties by slight mechanical stimulus. However, the mechanical response has been veiled because of lack of information on the bond nature. Here, we clarify the bond natu