ترغب بنشر مسار تعليمي؟ اضغط هنا

Using radio sources from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey, and optical counterparts in the Sloan Digital Sky Survey (SDSS), we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.
Using the Sloan Digital Sky Survey (SDSS) and the FIRST (Faint Images of the Radio Sky at Twenty Centimeters) catalogs, we examined the optical environments around double-lobed radio sources. Previous studies have shown that multi-component radio sou rces exhibiting some degree of bending between components are likely to be found in galaxy clusters. Often this radio emission is associated with a cD-type galaxy at the center of a cluster. We cross-correlated the SDSS and FIRST catalogs and measured the richness of the cluster environments surrounding both bent and straight multi-component radio sources. This led to the discovery and classification of a large number of galaxy clusters out to a redshift of z ~ 0.5. We divided our sample into smaller subgroups based on their optical and radio properties. We find that FR I radio sources are more likely to be found in galaxy clusters than FR II sources. Further, we find that bent radio sources are more often found in galaxy clusters than non-bent radio sources. We also examined the environments around single-component radio sources and find that single-component radio sources are less likely to be associated with galaxy clusters than extended, multi-component radio sources. Bent, visually-selected sources are found in clusters or rich groups ~78% of the time. Those without optical hosts in SDSS are likely associated with clusters at even higher redshifts, most with redshifts of z > 0.7.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا