ترغب بنشر مسار تعليمي؟ اضغط هنا

An Examination of the Optical Substructure of Galaxy Clusters Hosting Radio Sources

345   0   0.0 ( 0 )
 نشر من قبل Joshua Wing
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using radio sources from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey, and optical counterparts in the Sloan Digital Sky Survey (SDSS), we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.



قيم البحث

اقرأ أيضاً

The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, consid ering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters.
We used optical imaging and spectroscopic data to derive substructure estimates for local Universe ($z < 0.11$) galaxy clusters from two different samples. The first was selected through the Sunyaev-Zeldovich (SZ) effect by the Planck satellite and t he second is an X-ray selected sample. In agreement to X-ray substructure estimates we found that the SZ systems have a larger fraction of substructure than the X-ray clusters. We have also found evidence that the higher mass regime of the SZ clusters, compared to the X-ray sample, explains the larger fraction of disturbed objects in the Planck data. Although we detect a redshift evolution in the substructure fraction, it is not sufficient to explain the different results between the higher-z SZ sample and the X-ray one. We have also verified a good agreement ($sim$60$%$) between the optical and X-ray substructure estimates. However, the best level of agreement is given by the substructure classification given by measures based on the brightest cluster galaxy (BCG), either the BCG$-$X-ray centroid offset, or the magnitude gap between the first and second BCGs. We advocate the use of those two parameters as the most reliable and cheap way to assess cluster dynamical state. We recommend an offset cut of $sim$0.01$times$R$_{500}$ to separate relaxed and disturbed clusters. Regarding the magnitude gap the separation can be done at $Delta m_{12} = 1.0$. The central galaxy paradigm (CGP) may not be valid for $sim$20$%$ of relaxed massive clusters. This fraction increases to $sim$60$%$ for disturbed systems.
We report on the detection of a giant radio halo in the cluster Abell 3404 as well as confirmation of the radio halo observed in Abell 141 (with linear extents $sim 770$ kpc and $sim 850$ kpc, respectively). We use the Murchison Widefield Array (MWA) in conjunction with the Australian Square Kilometre Array Pathfinder (ASKAP) and the Australia Telescope Compact Array (ATCA) to characterise the emission and intervening radio sources from $sim100$-$1000$ MHz; power law models are fit to the spectral energy distributions with spectral indices $alpha_{88}^{1110} = -1.66 pm 0.07$ and $alpha_{88}^{944} = -1.06 pm 0.09$ for the radio halos in Abell 3404 and Abell 141, respectively. We find strong correlation between radio and X-ray surface brightness for Abell~3404 but little correlation for Abell~141. We note each cluster has an atypical morphology for a radio-halo--hosting cluster, with Abell 141 having been previously reported to be in a pre-merging state, and Abell 3404 is largely relaxed with only minor evidence for a disturbed morphology. We find that the radio halo power is consistent with the current radio halo sample and $P_ u$-$M$ scaling relations, but note that the radio halo in Abell 3404 is an ultra-steep-spectrum radio halo (USSRH) and, as with other USSRHs lies slightly below the best-fit $P_{1.4}$-$M$ relation. We find that an updated scaling relation is consistent with previous results and shifting the frequency to 150 MHz does not significantly alter the best-fit relations with a sample of 86 radio halos. We suggest that the USSRH halo in Abell 3404 represents the faint class of radio halos that will be found in clusters undergoing weak mergers.
We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.
191 - Simona Giacintucci 2011
The knowledge of the origin and statistical properties of diffuse radio emission in galaxy clusters has appreciably improved thanks to the GMRT Radio Halo Survey, a project based on 610 MHz observations of clusters belonging to a statistically comple te sample. However, the spectral properties of cluster diffuse sources are still poorly known and uncertain. High sensitivity and multi-resolution observations at low frequency ($le$0.3 GHz) are needed for accurate spectral studies. Here, GMRT images at 325 MHz are presented for the clusters A2744, A1300, A1758N and A781, all hosting cluster-scale diffuse emission in the form of a giant halo and/or relic. These observations are part of a new observational campaign to follow up with the GMRT at 150, 235 and 325 MHz all diffuse radio sources in the cluster sample of the GMRT Radio Halo Survey and obtain detailed information on their radio spectral properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا