ترغب بنشر مسار تعليمي؟ اضغط هنا

In interstellar dust grains, internal processes dissipate rotational kinetic energy. The dissipation is accompanied by thermal fluctuations, which transfer energy from the vibrational modes to rotation. Together, these processes are known as internal relaxation. For the past several years, internal relaxation has been thought to give rise to thermal flipping, with profound consequences for grain alignment theory. I show that thermal flipping is not possible in the limit that the inertia tensor does not vary with time.
Radiative torques, due to the absorption and scattering of starlight, are thought to play a major role in the alignment of grains with the interstellar magnetic field. The absorption of radiation also gives rise to recoil torques, associated with the photoelectric effect and photodesorption. The recoil torques are much more difficult to model and compute than the direct radiative torque. Here, we consider the relatively simple case of a spheroidal grain. Given our best estimates for the photoelectric yield and other relevant grain physical properties, we find that the recoil torques contribute at the 10% level or less compared with the direct radiative torque. We recommend that the recoil torques not be included in models of radiation-driven grain alignment at this time. However, additional experimental characterization of the surface properties and photoelectric yield for sub-micron grains is needed to better quantify the magnitude of these torques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا