ترغب بنشر مسار تعليمي؟ اضغط هنا

85 - Jose H. Groh 2009
We report optical observations of the Luminous Blue Variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV 4088-4116 Angstroms. To match their observed lin e profiles from 2009 May, a high rotational velocity of vrot=150 +- 20 km/s is needed (assuming an inclination angle of 30 degrees), implying that HR Car rotates at ~0.88 +- 0.2 of its critical velocity for break-up (vcrit). Our results suggest that fast rotation is typical in all strong-variable, bona-fide galactic LBVs, which present S Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the LBV minimum instability strip). We suggest this region corresponds to where vcrit is reached. To the left of this strip, a forbidden zone with vrot/vcrit>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low vrot, we propose that LBVs can be separated in two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that SN progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is an additional evidence that such stars could explode during the LBV phase.
49 - Jose H. Groh 2009
We present a detailed spectroscopic analysis of the luminous blue variable AG Carinae during the last two visual minimum phases of its S-Dor cycle (1985-1990 and 2000-2003). The analysis reveals an overabundance of He, N, and Na, and a depletion of H , C, and O, on the surface of AG Car, indicating the presence of CNO-processed material. Furthermore, the ratio N/O is higher on the stellar surface than in the nebula. We found that the minimum phases of AG Car are not equal to each other, since we derived a noticeable difference between the maximum effective temperature achieved during 1985-1990 (22,800 K) and 2000-2001 (17,000 K). While the wind terminal velocity was 300 km/s in 1985-1990, it was as low as 105 km/s in 2001. The mass-loss rate, however, was lower from 1985-1990 (1.5 x 10^(-5) Msun/yr) than from 2000-2001 (3.7 x 10^(-5) Msun/yr). We found that the wind of AG Car is significantly clumped (f=0.10 - 0.25) and that clumps must be formed deep in the wind. We derived a bolometric luminosity of 1.5 x 10^6 Lsun during both minimum phases which, contrary to the common assumption, decreases to 1.0 x 10^6 Lsun as the star moves towards maximum flux in the V band. Assuming that the decrease in the bolometric luminosity of AG Car is due to the energy used to expand the outer layers of the star (Lamers 1995), we found that the expanding layers contain roughly 0.6 - 2 Msun. Such an amount of mass is an order of magnitude lower than the nebular mass around AG Car, but is comparable to the nebular mass found around lower-luminosity LBVs and to that of the Little Homunculus of Eta Car. If such a large amount of mass is indeed involved in the S Dor-type variability, we speculate that such instability could be a failed Giant Eruption, with several solar masses never becoming unbound from the star.(abridged)
The enigmatic object HD 45166 is a qWR star in a binary system with an orbital period of 1.596 day, and presents a rich emission-line spectrum in addition to absorption lines from the companion star (B7 V). As the system inclination is very small (i= 0.77 +- 0.09 deg), HD 45166 is an ideal laboratory for wind-structure studies. The goal of the present paper is to determine the fundamental stellar and wind parameters of the qWR star. A radiative transfer model for the wind and photosphere of the qWR star was calculated using the non-LTE code CMFGEN. The wind asymmetry was also analyzed using a recently-developed version of CMFGEN to compute the emerging spectrum in two-dimensional geometry. The temporal-variance spectrum (TVS) was calculated for studying the line-profile variations. Abundances, stellar and wind parameters of the qWR star were obtained. The qWR star has an effective temperature of Teff=50000 +- 2000 K, a luminosity of log(L/Lsun)=3.75 +- 0.08, and a corresponding photospheric radius of Rphot=1.00 Rsun. The star is helium-rich (N(H)/N(He) = 2.0), while the CNO abundances are anomalous when compared either to solar values, to planetary nebulae, or to WR stars. The mass-loss rate is Mdot = 2.2 . 10^{-7} Msun/yr, and the wind terminal velocity is vinf=425 km/s. The comparison between the observed line profiles and models computed under different latitude-dependent wind densities strongly suggests the presence of an oblate wind density enhancement, with a density contrast of at least 8:1 from equator to pole. If a high velocity polar wind is present (~1200 km/s), the minimum density contrast is reduced to 4:1. The wind parameters determined are unusual when compared to O-type stars or to typical WR stars. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا