ترغب بنشر مسار تعليمي؟ اضغط هنا

45 - J. Vieira , L.D. Amorim , Y. Fang 2014
We study the evolution of the self-modulation instability using bunches with finite rise times. Using particle-in-cell simulations we show that unlike long bunches with sharp rise times, there are large variations of the wake amplitudes and wake phas e velocity when bunches with finite rise times are used. These results show that use of bunches with sharp rise times is important to seed the self-modulation instability and to ensure stable acceleration regimes.
We explore the role of the background plasma ion motion in self-modulated plasma wakefield accelerators. We employ J. Dawsons plasma sheet model to derive expressions for the transverse plasma electric field and ponderomotive force in the narrow bunc h limit. We use these results to determine the on-set of the ion dynamics, and demonstrate that the ion motion could occur in self-modulated plasma wakefield accelerators. Simulations show the motion of the plasma ions can lead to the early suppression of the self-modulation instability and of the accelerating fields. The background plasma ion motion can nevertheless be fully mitigated by using plasmas with heavier plasmas.
114 - M. Tzoufras , W. Lu , F.S. Tsung 2008
A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is mod ified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel are derived. It is shown that very high beam-loading efficiency can be achieved, while the energy spread of the bunch is conserved. The theoretical results are verified with the Particle-In-Cell code OSIRIS.
We use the quasi-static particle-in-cell code QuickPIC to perform full-scale, one-to-one LWFA numerical experiments, with parameters that closely follow current experimental conditions. The propagation of state-of-the-art laser pulses in both preform ed and uniform plasma channels is examined. We show that the presence of the channel is important whenever the laser self-modulations do not dominate the propagation. We examine the acceleration of an externally injected electron beam in the wake generated by 10 J laser pulses, showing that by using ten-centimeter-scale plasma channels it is possible to accelerate electrons to more than 4 GeV. A comparison between QuickPIC and 2D OSIRIS is provided. Good qualitative agreement between the two codes is found, but the 2D full PIC simulations fail to predict the correct laser and wakefield amplitudes.
Three-dimensional Particle-in-Cell (PIC) simulations with the code QuickPIC are used to illustrate the typical accelerating structures associated with the interaction of an intense laser beam with an underdense plasma in the blowout regime. Our simul ations are performed with an externally injected electron beam, positioned in the region of maximum accelerating gradients. As the laser propagates in the plasma, almost complete electron cavitation occurs, leading to the generation of accelerating fields in excess of 1 GeV/cm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا