ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on transport properties of monolayer graphene with a laterally modulated potential profile, employing striped top gate electrodes with spacings of 100 nm to 200 nm. Tuning of top and back gate voltages gives rise to local charge carrier den sity disparities, enabling the investigation of transport properties either in the unipolar (nn) or the bipolar (np) regime. In the latter pronounced single- and multibarrier Fabry-Perot (FP) resonances occur. We present measurements of different devices with different numbers of top gate stripes and spacings. The data are highly consistent with a phase coherent ballistic tight binding calculation and quantum capacitance model, whereas a superlattice effect and modification of band structure can be excluded.
We study a crystallographic etching process of graphene nanostructures where zigzag edges can be prepared selectively. The process involves heating exfoliated single-layer graphene samples with a predefined pattern of antidot arrays in an argon atmos phere at 820 C, which selectively removes carbon atoms located on armchair sites. Atomic force microscopy and scanning electron microscopy cannot resolve the structure on the atomic scale. However, weak localization and Raman measurements - which both probe intervalley scattering at armchair edges - indicate that zigzag regions are enhanced compared to samples prepared with oxygen based reactive ion etching only.
We present results of non-local and three terminal (3T) spin precession measurements on spin injection devices fabricated on epitaxial graphene on SiC. The measurements were performed before and after an annealing step at 150 degrees Celsius for 15 m inutes in vacuum. The values of spin relaxation length L_s and spin relaxation time tau_s obtained after annealing are reduced by a factor 2 and 4, respectively, compared to those before annealing. An apparent discrepancy between spin diffusion constant D_s and charge diffusion constant D_c can be resolved by investigating the temperature dependence of the g-factor, which is consistent with a model for paramagnetic magnetic moments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا