ترغب بنشر مسار تعليمي؟ اضغط هنا

The large-scale surveys such as PTF, CRTS and Pan-STARRS-1 that have emerged within the past 5 years or so employ digital databases and modern analysis tools to accentuate research into Time Domain Astronomy (TDA). Preparations are underway for LSST which, in another 6 years, will usher in the second decade of modern TDA. By that time the Digital Access to a Sky Century @ Harvard (DASCH) project will have made available to the community the full sky Historical TDA database and digitized images for a century (1890--1990) of coverage. We describe the current DASCH development and some initial results, and outline plans for the production scanning phase and data distribution which is to begin in 2012. That will open a 100-year window into temporal astrophysics, revealing rare transients and (especially) astrophysical phenomena that vary on time-scales of a decade. It will also provide context and archival comparisons for the deeper modern surveys
The Energetic X-ray Imaging Survey Telescope (EXIST) is designed to i) use the birth of stellar mass black holes, as revealed by cosmic Gamma-Ray Bursts (GRBs), as probes of the very first stars and galaxies to exist in the Universe. Both their extre me luminosity (~104 times larger than the most luminous quasars) and their hard X-ray detectability over the full sky with wide-field imaging make them ideal back-lights to measure cosmic structure with X-ray, optical and near-IR (nIR) spectra over many sight lines to high redshift. The full-sky imaging detection and rapid followup narrow-field imaging and spectroscopy allow two additional primary science objectives: ii) novel surveys of supermassive black holes (SMBHs) accreting as very luminous but rare quasars, which can trace the birth and growth of the first SMBHs as well as quiescent SMBHs (non-accreting) which reveal their presence by X-ray flares from the tidal disruption of passing field stars; and iii) a multiwavelength Time Domain Astrophysics (TDA) survey to measure the temporal variability and physics of a wide range of objects, from birth to death of stars and from the thermal to non-thermal Universe. These science objectives are achieved with the telescopes and mission as proposed for EXIST described here.
With the Swift detection of GRB090423 at z = 8.2, it was confirmed that GRBs are now detectable at (significantly) larger redshifts than AGN, and so can indeed be used as probes of the Early Universe. The proposed Energetic X-ray Imaging Survey Teles cope (EXIST) mission has been designed to detect and promptly measure redshifts and both soft X-ray (0.1 - 10 keV) and simultaneous nUV-nIR (0.3 - 2.3microns) imaging and spectra for GRBs out to redshifts z ~18, which encompasses (or even exceeds) current estimates for Pop III stars that are expected to be massive and possibly GRB sources. Scaling from Swift for the ~10X greater sensitivity of EXIST, more than 100 GRBs at z >=8 may be detected and would provide direct constraints on the formation and evolution of the first stars and galaxies. For GRBs at redshifts z >= 8, with Lyman breaks at greater than 1.12microns, spectra at resolution R = 30 or R = 3000 for afterglows with AB magnitudes brighter than 24 or 20 (respectively) within ~3000sec of trigger will directly probe the Epoch of Reionization, formation of galaxies, and cosmic star formation rate. The proposed EXIST mission can probe these questions, and many others, given its unparalleled combination of sensitivity and spatial-spectral-temporal coverage and resolution. Here we provide an overview of the key science objectives for GRBs as probes of the early Universe and of extreme physics, and the mission plan and technical readiness to bring this to EXIST.
76 - J. Grindlay , J. Bloom , P. Coppi 2010
The epochs of origin of the first stars and galaxies, and subsequent growth of the first supermassive black holes, are among the most fundamental questions. Observations of the highest redshift Gamma-Ray Bursts (GRBs) will be the most compelling in s itu probe of the history of initial star formation and consequent epoch of reionization if their prompt and precise detection can be followed immediately by sensitive near-IR imaging and spectroscopy. Blazars are the persistent analogs of GRBs and for the same reason (beaming) can be observed at highest redshifts where they might best trace the high accretion rate-driven jets and growth of supermassive black holes in galaxies. The proposed EXIST mission can uniquely probe these questions, and many others, given its unparalled combination of sensitivity and spatial-spectral-temporal coverage and resolution. Here we provide a brief summary of the mission design, key science objectives, mission plan and readiness for EXIST, as proposed to Astro2010.
This Commentary discusses the widespread impact of the milestone 1980 paper by Sunyaev and Titarchuk on Comptonization and points out a new possible application to the temporal broadening of the most distant Gamma Ray Bursts.
The population of stellar black holes (SBHs) in the Galaxy and galaxies generally is poorly known in both number and distribution. SBHs are the fossil record of the massive stars in galaxy evolution and may have produced some (if not all) of the inte rmediate mass (gsim100Msun) black holes (IMBHs) and, in turn, the central supermassive black holes (SMBHs) in galactic nuclei. For the first time, a Galaxy-wide census of accreting black holes, and their more readily recognizable tracer population, accreting neutron stars (NSs), could be measured with a wide-field hard X-ray imaging survey and soft X-ray and optical/IR prompt followup -- as proposed for the EXIST mission.
The Energetic X-ray Imaging Survey Telescope (EXIST) mission concept is optimized for study of high-z GRBs as probes of the early Universe. With a High Energy Telescope (HET) incorporating a 4.5m^2 5-600keV (CZT; 0.6mm pixels) detector plane for code d aperture imaging a 90deg x 70deg (>10% coding fraction) field of view with 2 resolution and <20 (90% conf.) positions for >5 sigma sources, EXIST will perform rapid (<200sec) slews onto GRBs. Prompt images and spectra are obtained with a co-aligned soft X-ray telescope (SXI; 0.1 - 10keV) and with a 1.1m optical-IR telescope (IRT) simultaneously in 4 bands (0.3 - 0.52micron, 0.52 - 0.9micron, 0.9 - 1.38micron, and 1.38 - 2.3micron). An initial image (100s) will yield prompt identification within the HET error circle from a <2 prompt SXI position; or from VIS vs. IR dropouts or variability. An autonomous spacecraft re-point (<30) will then put the GRB on a 0.3 x 4 slit for either R = 3000 (for AB <21) or R =30 (for AB ~21-25) prompt spectra over the 0.3 - 0.9 micron and 0.9 - 2.3 micron bands. This will provide onboard redshifts within ~500-2000sec for most GRBs, reaching z ~20 (for Lyman-alpha breaks) if such GRBs exist, and spectra for studies of the host galaxy and local re-ionization patchiness as well as intervening cosmic structure. With ~600 GRBs/yr expected, including ~7-10% expected at z >7, EXIST will open a new era in studies of the early Universe as well as carry out a rich program of AGN and transient-source science. An overview of the GRB science objectives and a brief discussion of the overall mission design and operations is given, and example high-z GRB IRT spectra are shown. EXIST is being proposed to the Astro2010 Decadal Survey as a 5 year Medium Class mission that could be launched as early as 2017.
276 - Jonathan Grindlay 2008
Observations of a long-lasting Gamma-ray burst, one that has the brightest optical counterpart yet discovered, challenge theoretical understanding of these bursts but may enhance their usefulness as cosmic probes.
The synergy of GLAST and the proposed EXIST mission as the Black Hole Finder Probe in the Beyond Einstein Program is remarkable. With its full-sky per orbit hard X-ray imaging (3-600 keV) and nuFnu sensitivity comparable to GLAST, EXIST could measure variability and spectra of Blazars in the hard X-ray synchrotron component simultaneous with GLAST (~10-100GeV) measures of the inverse Compton component, thereby uniquely constraining intrinsic source spectra and allowing measured high energy spectral breaks to measure the cosmic diffuse extra-galactic background light (EBL) by determining the intervening diffuse IR photon field required to yield the observed break from photon-photon absorption. Such studies also constrain the physics of jets (and parameters and indeed the validity of SSC models) and the origin of the >100 MeV gamma-ray diffuse background likely arising from Blazars and jet-dominated sources. An overview of the EXIST mission, which could fly in the GLAST era, is given together with a synopsis of other key synergies of GLAST-EXIST science.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا