ترغب بنشر مسار تعليمي؟ اضغط هنا

Opening the 100-Year Window for Time Domain Astronomy

108   0   0.0 ( 0 )
 نشر من قبل Jonathan E. Grindlay
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large-scale surveys such as PTF, CRTS and Pan-STARRS-1 that have emerged within the past 5 years or so employ digital databases and modern analysis tools to accentuate research into Time Domain Astronomy (TDA). Preparations are underway for LSST which, in another 6 years, will usher in the second decade of modern TDA. By that time the Digital Access to a Sky Century @ Harvard (DASCH) project will have made available to the community the full sky Historical TDA database and digitized images for a century (1890--1990) of coverage. We describe the current DASCH development and some initial results, and outline plans for the production scanning phase and data distribution which is to begin in 2012. That will open a 100-year window into temporal astrophysics, revealing rare transients and (especially) astrophysical phenomena that vary on time-scales of a decade. It will also provide context and archival comparisons for the deeper modern surveys

قيم البحث

اقرأ أيضاً

We describe a dynamic science portal called the GROWTH Marshal that allows time-domain astronomers to define science programs, program filters to save sources from different discovery streams, co-ordinate follow-up with various robotic or classical t elescopes, analyze the panchromatic follow-up data and generate summary tables for publication. The GROWTH marshal currently serves 137 scientists, 38 science programs and 67 telescopes. Every night, in real-time, several science programs apply various customized filters to the 10^5 nightly alerts from the Zwicky Transient Facility. Here, we describe the schematic and explain the functionality of the various components of this international collaborative platform.
THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the grav itational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focusing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simultaneous multi-wavelegth studies. Here we present the THESEUS capabilities for studying the time variability of different classes of sources in parallel to, and without affecting, the gamma-ray bursts hunt.
Celestial objects exhibit a wide range of variability in brightness at different wavebands. Surprisingly, the most common methods for characterizing time series in statistics -- parametric autoregressive modeling -- is rarely used to interpret astron omical light curves. We review standard ARMA, ARIMA and ARFIMA (autoregressive moving average fractionally integrated) models that treat short-memory autocorrelation, long-memory $1/f^alpha$ `red noise, and nonstationary trends. Though designed for evenly spaced time series, moderately irregular cadences can be treated as evenly-spaced time series with missing data. Fitting algorithms are efficient and software implementations are widely available. We apply ARIMA models to light curves of four variable stars, discussing their effectiveness for different temporal characteristics. A variety of extensions to ARIMA are outlined, with emphasis on recently developed continuous-time models like CARMA and CARFIMA designed for irregularly spaced time series. Strengths and weakness of ARIMA-type modeling for astronomical data analysis and astrophysical insights are reviewed.
An axion-like particle (ALP) with mass $m_phi sim 10^{-15}$eV oscillates with frequency $sim$1 Hz. This mass scale lies in an open window of astrophysical constraints, and appears naturally as a consequence of grand unification (GUT) in string/M-theo ry. However, with a GUT-scale decay constant such an ALP overcloses the Universe, and cannot solve the strong CP problem. In this paper, we present a two axion model in which the 1 Hz ALP constitutes the entirety of the dark matter (DM) while the QCD axion solves the strong CP problem but contributes negligibly to the DM relic density. The mechanism to achieve the correct relic densities relies on low-scale inflation ($m_phi lesssim H_{rm inf}lesssim 1$ MeV), and we present explicit realisations of such a model. The scale in the axion potential leading to the 1 Hz axion generates a value for the strong CP phase which oscillates around $bar{theta}_{rm QCD}sim 10^{-12}$, within reach of the proton storage ring electric dipole moment experiment. The 1 Hz axion is also in reach of near future laboratory and astrophysical searches.
The nascent field of gravitational-wave astronomy offers many opportunities for effective and inspirational astronomy outreach. Gravitational waves, the ripples in space-time predicted by Einsteins theory of General Relativity, are produced by some o f the most energetic and dramatic phenomena in the cosmos, including black holes, neutron stars and supernovae. The detection of gravitational waves will help to address a number of fundamental questions in physics, from the evolution of stars and galaxies to the origin of dark energy and the nature of space-time itself. Moreover, the cutting-edge technology developed to search for gravitational waves is pushing back the frontiers of many fields, from lasers and materials science to high performance computing, and thus provides a powerful showcase for the attractions and challenges of a career in science and engineering. For several years a worldwide network of ground-based laser interferometric gravitational-wave detectors has been fully operational, including the two LIGO detectors in the United States. These detectors are already among the most sensitive scientific instruments on the planet and in the next few years their sensitivity will achieve further significant improvement. Those developments promise to open an exciting new window on the Universe, heralding the arrival of gravitational-wave astronomy as a revolutionary, new observational field. In this paper we describe the extensive program of public outreach activities already undertaken by the LIGO Scientific Collaboration, and a number of special events which we are planning for IYA2009.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا