ترغب بنشر مسار تعليمي؟ اضغط هنا

Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high-redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ~ 1.6) starburst galaxies with the Atacama Large (sub-)Millimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared detected galaxies having star formation rates (~300-800 Msolar/yr) elevated (>4x) above the star-forming `main sequence, and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ~ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (~30-50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as main-sequence outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical main-sequence star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the main sequence with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts such as being metal rich and having a higher ionization state of the interstellar medium.
We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-Object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Halpha emission line that falls within the H-band (1.6-1.8 um) spectroscopic window from star-forming galaxies with 1.4 < z < 1.7 and M_stellar>~10^10 Msolar. With the high multiplex capability of FMOS, it is now feasible to construct samples of over one thousand galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R~2600) effectively separates Halpha and [NII]6585 thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate - stellar mass relation. Galaxies with Halpha detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11-1.35 um) grating to detect Hbeta and [OIII]5008 that provides an assessment of extinction required to measure star formation rates not hampered by dust, and an indication of embedded Active Galactic Nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.
We describe X-ray observations with Chandra and XMM-Newton of 18 galaxy groups (M_group ~ 1-6x10^13 Msolar, z~0.05) from the Zurich Environmental Study (ZENS). We aim to establish the frequency and properties, unaffected by host galaxy dilution and o bscuration, of AGNs in central and satellite galaxy members, also as a function of halo-centric distance. X-ray point-source detections are reported for 22 of 177 observed galaxies, down to a limit of f_(0.5-8 keV) ~ 5x10^-15 erg cm^-2 s^-1, corresponding to a limiting luminosity of L_(0.5-8 keV)~3x10^40 erg s^-1. With the majority of the X-ray sources attributed to AGNs of low-to-moderate levels (L/L_Edd>~10^-4), we discuss the detection rate in the context of the occupation of AGNs to halos of this mass scale and redshift, and compare the structural/morphological properties between AGN-active and non-active galaxies of different rank and location within the group halos. We see a slight tendency for AGN hosts to have either relatively brighter/denser disks (or relatively fainter/diffuse bulges) than non-active galaxies of similar mass. At galaxy mass scales <10^11 Msolar, central galaxies appear to be a factor ~4 more likely to host AGNs than satellite galaxies of similar mass. This effect, coupled with the tendency for AGNs to reside in massive galaxies, explains the (weak) trend for AGNs to be preferentially found in the inner regions of groups, with no detectable trend with halo-centric distance in the frequency of AGNs within the satellite population. Finally, our data support other analyses in finding that the rate of decline with redshift of AGN activity in groups matches that of the global AGN population, indicating that either AGNs occur preferentially in groups, or that the evolution rate is independent of halo mass. These trends are of potential importance, and require X-ray coverage of a larger sample to be solidly confirmed.
We present the results of a program to acquire high-quality optical spectra of X-ray sources detected in the E-CDF-S and its central area. New spectroscopic redshifts are measured for 283 counterparts to Chandra sources with deep exposures (t~2-9 hr per pointing) using multi-slit facilities on both the VLT and Keck thus bringing the total number of spectroscopically-identified X-ray sources to over 500 in this survey field. We provide a comprehensive catalog of X-ray sources detected in the E-CDF-S including the optical and near-infrared counterparts, and redshifts (both spectroscopic and photometric) that incorporate published spectroscopic catalogs thus resulting in a final sample with a high fraction (80%) of X-ray sources having secure identifications. We demonstrate the remarkable coverage of the Lx-z plane now accessible from our data while emphasizing the detection of AGNs that contribute to the faint end of the luminosity function at 1.5<z<3. Our redshift catalog includes 17 type 2 QSOs that significantly increases such samples (2x). With our deepest VIMOS observation, we identify elusive optically-faint galaxies (R~25) at z~2-3 based upon the detection of interstellar absorption lines; we highlight one such case, an absorption-line galaxy at z=3.208 having no obvious signs of an AGN in its optical spectrum. In addition, we determine distances to eight galaxy groups with extended X-ray emission. Finally, we measure the physical extent of known large-scale structures (z~0.7) evident in the CDF-S. While a thick sheet (radial size of 67.7 Mpc) at z~0.67 extends over the full field, the z~0.73 structure is thin (18.8 Mpc) and filamentary as traced by both AGNs and galaxy groups. In the appendix, we provide spectroscopic redshifts for 49 counterparts to fainter X-ray sources detected only in the 1 and 2 Ms catalogs, and 48 VLA radio sources not detected in X-rays.
We review recent evidence for a clear association between accretion onto supermassive black holes and star formation up to z~1 in the zCOSMOS survey. Star formation rates (SFRs) are determined from the [OII] emission-line strength and a correction fo r the AGN contribution. We find that SFRs of X-ray selected AGN span a distribution of 1-100 solar masses per year and evolve in a manner that is indistinguishable from that of massive, star-forming galaxies. The close relationship between AGN activity and star formation is further supported by an increase in the AGN fraction with bluer rest-frame colors (U-V); we further illustrate how the location of AGNs in a color-magnitude diagram can be misleading in luminosity-limited samples due to the dependence of AGN activity on the stellar mass and the low mass-to-light ratios of blue cloud galaxies. To conclude, our results support a co-evolutionary scenario up to z~1 based on the constancy with redshift of the ratio between mass accretion rate and SFR.
The impact of environment on AGN activity up to z~1 is assessed by utilizing a mass-selected sample of galaxies from the 10k catalog of the zCOSMOS spectroscopic redshift survey. We identify 147 AGN by their X-ray emission as detected by XMM-Newton f rom a parent sample of 7234 galaxies. We measure the fraction of galaxies with stellar mass M_*>2.5x10^10 Msun that host an AGN as a function of local overdensity using the 5th, 10th and 20th nearest neighbors that cover a range of physical scales (~1-4 Mpc). Overall, we find that AGNs prefer to reside in environments equivalent to massive galaxies with substantial levels of star formation. Specifically, AGNs with host masses between 0.25-1x10^11 Msun span the full range of environments (i.e., field-to-group) exhibited by galaxies of the same mass and rest-frame color or specific star formation rate. Host galaxies having M_*>10^11 Msun clearly illustrate the association with star formation since they are predominantly bluer than the underlying galaxy population and exhibit a preference for lower density regions analogous to SDSS studies of narrow-line AGN. To probe the environment on smaller physical scales, we determine the fraction of galaxies (M_*>2.5x10^10 Msun) hosting AGNs inside optically-selected groups, and find no significant difference with field galaxies. We interpret our results as evidence that AGN activity requires a sufficient fuel supply; the probability of a massive galaxy to have retained some sufficient amount of gas, as evidence by its ongoing star formation, is higher in underdense regions where disruptive processes (i.e., galaxy harrassment, tidal stripping) are lessened.
We present a study of the host galaxies of AGN selected from the zCOSMOS survey to establish if accretion onto supermassive black holes and star formation are explicitly linked up to z~1. We identify 152 galaxies that harbor AGN, based on XMM observa tions of 7543 galaxies (i<22.5). Star formation rates (SFRs), including those weighted by stellar mass, are determined using the [OII]3727 emission-line, corrected for an AGN contribution. We find that the majority of AGN hosts have significant levels of star formation with a distribution spanning ~1-100 Msun yr^-1. The close association between AGN activity and star formation is further substantiated by an increase in the AGN fraction with the youthfulness of their stars as indicated by the rest-frame color (U-V) and spectral index Dn(4000); we demonstrate that mass-selection alleviates an artifical peak falling in the transition region when using luminosity-limited samples. We also find that the SFRs of AGN hosts evolve with cosmic time in a manner that closely mirrors the overall galaxy population and explains the low SFRs in AGNs (z<0.3) from the SDSS. We conclude that the conditions most conducive for AGN activity are a massive host galaxy and a large reservoir of gas. Furthermore, a direct correlation between mass accretion rate onto SMBHs and SFR is shown to be weak although the average ratio is constant with redshift, effectively shifting the evidence for a co-evolution scenario in a statistical manner to smaller physical scales. Our findings illustrate an intermittent scenario with an AGN lifetime substantially shorter than that of star formation and underlying complexities regarding fueling over vastly different physical scales yet to be determined [Abridged].
We present an analysis of 109 moderate-luminosity (41.9 < Log L{0.5-8.0 keV} < 43.7) AGN in the Extended Chandra Deep Field-South survey, which is drawn from 5,549 galaxies from the COMBO-17 and GEMS surveys having 0.4 < z < 1.1. These obscured or op tically-weak AGN facilitate the study of their host galaxies since the AGN provide an insubstantial amount of contamination to the galaxy light. We find that the color distribution of AGN host galaxies is highly dependent upon (1) the strong color-evolution of luminous (M_V < -20.7) galaxies, and (2) the influence of ~10 Mpc scale structures. When excluding galaxies within the redshift range 0.63 < z < 0.76, a regime dominated by sources in large-scale structures at z=0.67 and z=0.73, we observe a bimodality in the host galaxy colors. Galaxies hosting AGN at z > 0.8 preferentially have bluer (rest-frame U-V < 0.7) colors than their z <~ 0.6 counterparts (many of which fall along the red sequence). The fraction of galaxies hosting AGN peaks in the ``green valley (0.5 < U-V < 1.0); this is primarily due to enhanced AGN activity in the redshift interval 0.63 < z < 0.76. The AGN fraction in this redshift and color interval is 12.8% (compared to its `field value of 7.8%) and reaches a maximum of 14.8% at U-V~0.8. We further find that blue, bulge-dominated (Sersic index n>2.5) galaxies have the highest fraction of AGN (21%) in our sample. We explore the scenario that the evolution of AGN hosts is driven by galaxy mergers and illustrate that an accurate assessment requires a larger area survey since only three hosts may be undergoing a merger with timescales <1 Gyr following a starburst phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا