ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the evolution of a system of colloidal particles, trapped at a fluid interface and interacting via capillary attraction, as function of the range of the capillary interaction and temperature. We address the collapse of an initially hom ogeneous particle distribution and of a radially symmetric (disk--shaped) distribution of finite size, both theoretically by using a perturbative approach inspired by cosmological models and numerically by means of Brownian dynamics (BD) and dynamical density functional theory (DDFT). The results are summarized in a dynamical phase diagram, describing a smooth crossover from collective (gravitational-like) collapse to local (spinodal-like) clustering. In this crossover region, the evolution exhibits a peculiar shock wave behavior at the outer rim of the contracting, disk-shaped distribution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا