ﻻ يوجد ملخص باللغة العربية
We investigate the evolution of a system of colloidal particles, trapped at a fluid interface and interacting via capillary attraction, as function of the range of the capillary interaction and temperature. We address the collapse of an initially homogeneous particle distribution and of a radially symmetric (disk--shaped) distribution of finite size, both theoretically by using a perturbative approach inspired by cosmological models and numerically by means of Brownian dynamics (BD) and dynamical density functional theory (DDFT). The results are summarized in a dynamical phase diagram, describing a smooth crossover from collective (gravitational-like) collapse to local (spinodal-like) clustering. In this crossover region, the evolution exhibits a peculiar shock wave behavior at the outer rim of the contracting, disk-shaped distribution.
Fluctuations of the interface between coexisting colloidal fluid phases have been measured with confocal microscopy. Due to a very low surface tension, the thermal motions of the interface are so slow, that a record can be made of the positions of th
Deformation of a fluid interface caused by the presence of objects at the interface can lead to large lateral forces between the objects. We explore these fluid-mediated attractive force between partially submerged vertical cylinders. Forces are expe
The influence of a fluid-fluid interface on self-phoresis of chemically active, axially symmetric, spherical colloids is analyzed. Distinct from the studies of self-phoresis for colloids trapped at fluid interfaces or in the vicinity of hard walls, h
The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesosc
Euler buckling is the elastic instability of a column subjected to longitudinal compression forces at its ends. The buckling instability occurs when the compressing load reaches a critical value and an infinitesimal fluctuation leads to a large ampli