ترغب بنشر مسار تعليمي؟ اضغط هنا

We study a two-dimensional model of an isolated narrow topological band at partial filling with local attractive interactions. Numerically exact quantum Monte Carlo calculations show that the ground state is a superconductor with a critical temperatu re that scales nearly linearly with the interaction strength. We also find a broad pseudogap regime at temperatures above the superconducting phase that exhibits strong pairing fluctuations and a tendency towards electronic phase separation; introducing a small nearest neighbor attraction suppresses superconductivity entirely and results in phase separation. We discuss the possible relevance of superconductivity in this unusual regime to the physics of flat band moir{e} materials, and as a route to designing higher temperature superconductors.
Correlations in topological states of matter provide a rich phenomenology, including a reduction in the topological classification of the interacting system compared to its non-interacting counterpart. This happens when two phases that are topologica lly distinct on the non-interacting level become adiabatically connected once interactions are included. We use a quantum Monte Carlo method to study such a reduction. We consider a 2D charge-conserving analog of the Levin-Gu superconductor whose classification is reduced from $mathbb{Z}$ to $mathbb{Z}_4$. We may expect any symmetry-preserving interaction that leads to a symmetric gapped ground state at strong coupling, and consequently a gapped symmetric surface, to be sufficient for such reduction. Here, we provide a counter example by considering an interaction which (i) leads to a symmetric gapped ground state at sufficient strength and (ii) does not allow for any adiabatic path connecting the trivial phase to the topological phase with $w=4$. The latter is established by numerically mapping the phase diagram as a function of the interaction strength and a parameter tuning the topological invariant. Instead of the adiabatic connection, the system exhibits an extended region of spontaneous symmetry breaking separating the topological sectors. Frustration reduces the size of this long-range ordered region until it gives way to a first order phase transition. Within the investigated range of parameters, there is no adiabatic path deforming the formerly distinct free fermion states into each other. We conclude that an interaction which trivializes the surface of a gapped topological phase is necessary but not sufficient to establish an adiabatic path within the reduced classification. In other words, the class of interactions which trivializes the surface is different from the class which establishes an adiabatic connection in the bulk.
We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model that is known to host a $mathbb{ Z}_2$ spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap, they remain massless in the $mathbb{Z}_2$ spin liquid phase due to the breakdown of Kondo screening. Since our model has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions. We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral function, and also by studying the mutual information between the electrons and the spins.
Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of d_{xy}-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s-wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.
Topological superconductors, such as noncentrosymmetric superconductors with strong spin-orbit coupling, exhibit protected zero-energy surface states, which possess an intricate helical spin structure. We show that this nontrival spin character of th e surface states can be tested experimentally from the absence of certain backscattering processes in Fourier-transform scanning tunneling measurements. A detailed theoretical analysis is given of the quasiparticle scattering interference on the surface of both nodal and fully gapped topological superconductors with different crystal point-group symmetries. We determine the universal features in the interference patterns resulting from magnetic and nonmagnetic scattering processes of the surface quasiparticles. It is shown that Fourier-transform scanning tunneling spectroscopy allows us to uniquely distinguish among different types of topological surface states, such as zero-energy flat bands, arc surface states, and helical Majorana modes, which in turn provides valuable information on the spin and orbital pairing symmetry of the bulk superconducting state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا