ﻻ يوجد ملخص باللغة العربية
Topological superconductors, such as noncentrosymmetric superconductors with strong spin-orbit coupling, exhibit protected zero-energy surface states, which possess an intricate helical spin structure. We show that this nontrival spin character of the surface states can be tested experimentally from the absence of certain backscattering processes in Fourier-transform scanning tunneling measurements. A detailed theoretical analysis is given of the quasiparticle scattering interference on the surface of both nodal and fully gapped topological superconductors with different crystal point-group symmetries. We determine the universal features in the interference patterns resulting from magnetic and nonmagnetic scattering processes of the surface quasiparticles. It is shown that Fourier-transform scanning tunneling spectroscopy allows us to uniquely distinguish among different types of topological surface states, such as zero-energy flat bands, arc surface states, and helical Majorana modes, which in turn provides valuable information on the spin and orbital pairing symmetry of the bulk superconducting state.
Electrons on the surface of a strong topological insulator, such as Bi2Te3 or Bi1-xSnx, form a topologically protected helical liquid whose excitation spectrum contains an odd number of massless Dirac fermions. A theoretical survey and classification
The quasiparticle excitation is one of the most fundamental and ubiquitous physical observables in cuprate superconductors, carrying information about the bosonic glue forming electron pairs. Here the autocorrelation of the quasiparticle excitation s
We theoretically study the dependence of the quasiparticle (QP) scattering rate $varGamma$ on the uniaxial anisotropy of a Fermi surface with changing the magnetic field angle $alpha_{rm M}$. We consider the QP scattering due to the non-magnetic impu
The cuprate high-temperature superconductors are known to host a wide array of effects due to interactions and disorder. In this work, we look at some of the consequences of these effects which can be visualized by scanning tunneling spectroscopy. Th
Quasiparticle interference (QPI) provides a wealth of information relating to the electronic structure of a material. However, it is often assumed that this information is constrained to two-dimensional electronic states. Here, we show that this is n