ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new observations of the lensing cluster SMACSJ2031.8-4036 obtained with the MUSE integral field spectrograph as part of its commissioning on the Very Large Telescope. By providing medium-resolution spectroscopy over the full 4750-9350 Angs troms domain and a 1x1 arcmin2 field of view, MUSE is ideally suited for identifying lensed galaxies in the cluster core, in particular multiple-imaged systems. We perform a redshift analysis of all sources in the datacube and identify a total of 12 systems ranging from $z=1.46$ to $z=6.4$, with all images of each system confirmed by a spectroscopic redshift. This allows us to accurately constrain the cluster mass profile in this region. We foresee that future MUSE observations of cluster cores should help us discover very faint Lyman-alpha emitters thanks to the strong magnification and the high sensitivity of this instrument.
83 - J.Richard 2014
Extending over three Hubble Space Telescope (HST) cycles, the Hubble Frontier Fields (HFF) initiative constitutes the largest commitment ever of HST time to the exploration of the distant Universe via gravitational lensing by massive galaxy clusters. We here present models of the mass distribution in the six HFF cluster lenses, derived from a joint strong- and weak-lensing analysis anchored by a total of 88 multiple-image systems identified in existing HST data. The resulting maps of the projected mass distribution and of the gravitational magnification effectively calibrate the HFF clusters as gravitational telescopes. Allowing the computation of search areas in the source plane, these maps are provided to the community to facilitate the exploitation of forthcoming HFF data for quantitative studies of the gravitationally lensed population of background galaxies. Our models of the gravitational magnification afforded by the HFF clusters allow us to quantify the lensing-induced boost in sensitivity over blank-field observations and predict that galaxies at $z>10$ and as faint as m(AB)=32 will be detectable, up to 2 magnitudes fainter than the limit of the Hubble Ultra Deep Field.
119 - J. Richard 2012
MUSE, the Multi Unit Spectroscopic Explorer, is a 2nd generation integral-field spectrograph under final assembly to see first light at the Very Large Telescope in 2013. By capturing ~ 90000 optical spectra in a single exposure, MUSE represents a cha llenge for data reduction and analysis. We summarise here the main features of the Data Reduction System, as well as some of the tools under development by the MUSE consortium and the DAHLIA team to handle the large MUSE datacubes (about 4x?10^8 pixels) to recover the original astrophysical signal.
209 - Johan Richard 2009
We present a statistical analysis of a sample of 20 strong lensing clusters drawn from the Local Cluster Substructure Survey (LoCuSS), based on high resolution Hubble Space Telescope imaging of the cluster cores and follow-up spectroscopic observatio ns using the Keck-I telescope. We use detailed parameterized models of the mass distribution in the cluster cores, to measure the total cluster mass and fraction of that mass associated with substructures within R<250kpc.These measurements are compared with the distribution of baryons in the cores, as traced by the old stellar populations and the X-ray emitting intracluster medium. Our main results include: (i) the distribution of Einstein radii is log-normal, with a peak and 1sigma width of <log(RE(z=2))>=1.16+/-0.28; (ii) we detect an X-ray/lensing mass discrepancy of <M_SL/M_X>=1.3 at 3 sigma significance -- clusters with larger substructure fractions displaying greater mass discrepancies, and thus greater departures from hydrostatic equilibrium; (iii) cluster substructure fraction is also correlated with the slope of the gas density profile on small scales, implying a connection between cluster-cluster mergers and gas cooling. Overall our results are consistent with the view that cluster-cluster mergers play a prominent role in shaping the properties of cluster cores, in particular causing departures from hydrostatic equilibrium, and possibly disturbing cool cores. Our results do not support recent claims that large Einstein radius clusters present a challenge to the CDM paradigm.
We present a strong lensing analysis of the galaxy cluster Abell 370 (z=0.375) based on the recent multicolor ACS images obtained as part of the Early Release Observation (ERO) that followed the Hubble Service Mission #4. Back in 1987, the giant grav itational arc (z=0.725) in Abell 370 was one of the first pieces of evidence that massive clusters are dense enough to act as strong gravitational lenses. The new observations reveal in detail its disklike morphology, and we show that it can be interpreted as a complex five-image configuration, with a total magnification factor of 32+/-4. Moreover, the high resolution multicolor information allowed us to identify 10 multiply imaged background galaxies. We derive a mean Einstein radius of RE=39+/-2 for a source redshift at z=2, corresponding to a mass of M(<RE) = 2.82+/-0.15 1e14 Msol and M(<250 kpc)=3.8+/-0.2 1e14 Msol, in good agreement with Subaru weak-lensing measurements. The typical mass model error is smaller than 5%, a factor 3 of improvement compared to the previous lensing analysis. Abell 370 mass distribution is confirmed to be bi-modal with very small offset between the dark matter, the X-ray gas and the stellar mass. Combining this information with the velocity distribution reveals that Abell 370 is likely the merging of two equally massive clusters along the line of sight, explaining the very high mass density necessary to efficiently produce strong lensing. These new observations stress the importance of multicolor imaging for the identification of multiple images which is key to determining an accurate mass model. The very large Einstein radius makes Abell 370 one of the best clusters to search for high redshift galaxies through strong magnification in the central region.
249 - Johan Richard 2008
We present the results of a systematic search for gravitationally-lensed continuum Lyman break `drop-outs beyond a redshift 7 conducted via very deep imaging through six foreground clusters undertaken with the Hubble and Spitzer Space Telescopes. The survey has yielded 10 z-band and 2 J-band drop-out candidates to photometric limits of J_110~=26.2 AB (5sigma). Taking into account the magnifications afforded by our clusters (1-4 magnitudes), we probe the presence of z>7 sources to unlensed limits of J_{110}~=30 AB, fainter than those charted in the Hubble Ultradeep Field. To verify the fidelity of our candidates we conduct a number of tests for instrumental effects which would lead to spurious detections, and carefully evaluate the likelihood of foreground contamination by considering photometric uncertainties in the drop-out signature, the upper limits from stacked IRAC data and the statistics of multiply-imaged sources. Overall, we conclude that we can expect about half of our sample of z-band drop-outs are likely to be at high redshift. An ambitious infrared spectroscopic campaign undertaken with the NIRSPEC spectrograph at the WM Keck Observatory for seven of the most promising candidates failed to detect any Lyman-alpha emission highlighting the challenge of making further progress in this field. While the volume density of high redshift sources will likely remain uncertain until more powerful facilities are available, our data provides the first potentially interesting constraints on the UV luminosity function at z~=7.5 at intrinsically faint limits. We discuss the implications of our results in the context of the hypothesis that the bulk of the reionizing photons in the era 7<z<12 arise in low luminosity galaxies undetected by conventional surveys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا