ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution resonant inelastic X-ray scattering (RIXS) at the oxygen K-edge has been used to study the orbital excitations of Ca2RuO4 and Sr2RuO4. In combination with linear dichroism X-ray absorption spectroscopy, the ruthenium 4d-orbital occupa tion and excitations were probed through their hybridization with the oxygen p-orbitals. These results are described within a minimal model, taking into account crystal field splitting and a spin-orbit coupling lambda_{so}=200~meV. The effects of spin-orbit interaction on the electronic structure and implications for the Mott and superconducting ground states of (Ca,Sr)2RuO4 are discussed.
Nodal angle resolved photoemission spectra taken on overdoped La$_{1.77}$Sr$_{0.23}$CuO$_4$ are presented and analyzed. It is proven that the low-energy excitations are true Landau Fermi-liquid quasiparticles. We show that momentum and energy distrib ution curves can be analyzed self-consistently without quantitative knowledge of the bare band dispersion. Finally, by imposing Kramers-Kronig consistency on the self-energy $Sigma$, insight into the quasiparticle residue is gained. We conclude by comparing our results to quasiparticle properties extracted from thermodynamic, magneto-resistance, and high-field quantum oscillation experiments on overdoped Tl$_2$Ba$_2$CuO$_{6+delta}$.
X-ray diffraction measurements show that the high-temperature superconductor YBa$_2$Cu$_3$O$_{6.54}$, with ortho-II oxygen order, has charge density wave order (CDW) in the absence of an applied magnetic field. The dominant wavevector of the CDW is $ mathbf{q}_{mathrm{CDW}} = (0, 0.328(2), 0.5)$, with the in-plane component parallel to the $mathbf{b}$-axis (chain direction). It has a similar incommensurability to that observed in ortho-VIII and ortho-III samples, which have different dopings and oxygen orderings. Our results for ortho-II contrast with recent high-field NMR measurements, which suggest a commensurate wavevector along the $mathbf{a}$-axis. We discuss the relationship between spin and charge correlations in YBa$_2$Cu$_3$O$_{y}$, and recent high-field quantum oscillation, NMR and ultrasound experiments.
Superconductivity often emerges in the proximity of, or in competition with, symmetry breaking ground states such as antiferromagnetism or charge density waves (CDW)1-5. A number of materials in the cuprate family, which includes the high-transition- temperature (high-Tc) superconductors, show spin and charge density wave order5-7. Thus a fundamental question is to what extent these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy x-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity are competing orders in this typical high-Tc superconductor, and high-Tc superconductivity can form from a pre-existing CDW state. Our results explain observations of small Fermi surface pockets8, negative Hall and Seebeck effect9,10 and the Tc plateau11 in this material when underdoped.
133 - J. Chang , J. S. White , M. Laver 2012
We use small angle neutron scattering to study the superconducting vortex lattice in La$_{2-x}$Sr$_x$CuO$_4$ as a function of doping and magnetic field. We show that near optimally doping the vortex lattice coordination and the superconducting cohere nce length $xi$ are controlled by a van-Hove singularity crossing the Fermi level near the Brillouin zone boundary. The vortex lattice properties change dramatically as a spin-density-wave instability is approached upon underdoping. The Bragg glass paradigm provides a good description of this regime and suggests that SDW order acts as a novel source of disorder on the vortex lattice.
233 - J. Chang , M. Shi , S. Pailhes 2010
An angle-resolved photoemission study of the scattering rate in the superconducting phase of the high-temperature superconductor LSCO with $x=0.145$ and $x=0.17$, as a function of binding energy and momentum, is presented. We observe that the scatter ing rate scales linearly with binding energy up to the high-energy scale $E_1sim0.4$ eV. The scattering rate is found to be strongly anisotropic, with a minimum along the (0,0)-($pi,pi$) direction. A possible connection to a quantum-critical point is discussed.
268 - J. Chang , R. Daou , Cyril Proust 2009
The Seebeck and Nernst coefficients $S$ and $ u$ of the cuprate superconductor YBa$_2$Cu$_3$O$_y$ (YBCO) were measured in a single crystal with doping $p = 0.12$ in magnetic fields up to H = 28 T. Down to T=9 K, $ u$ becomes independent of field by $ H simeq 30$ T, showing that superconducting fluctuations have become negligible. In this field-induced normal state, $S/T$ and $ u/T$ are both large and negative in the $T to 0$ limit, with the magnitude and sign of $S/T$ consistent with the small electron-like Fermi surface pocket detected previously by quantum oscillations and the Hall effect. The change of sign in $S(T)$ at $T simeq 50$ K is remarkably similar to that observed in La$_{2-x}$Ba$_x$CuO$_4$, La$_{2-x-y}$Nd$_y$Sr$_x$CuO$_4$ and La$_{2-x-y}$Eu$_y$Sr$_x$CuO$_4$, where it is clearly associated with the onset of stripe order. We propose that a similar density-wave mechanism causes the Fermi surface reconstruction in YBCO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا