ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin density wave induced disordering of the vortex lattice in superconducting La$_{2-x}$Sr$_x$CuO$_4$

157   0   0.0 ( 0 )
 نشر من قبل Johan Chang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use small angle neutron scattering to study the superconducting vortex lattice in La$_{2-x}$Sr$_x$CuO$_4$ as a function of doping and magnetic field. We show that near optimally doping the vortex lattice coordination and the superconducting coherence length $xi$ are controlled by a van-Hove singularity crossing the Fermi level near the Brillouin zone boundary. The vortex lattice properties change dramatically as a spin-density-wave instability is approached upon underdoping. The Bragg glass paradigm provides a good description of this regime and suggests that SDW order acts as a novel source of disorder on the vortex lattice.


قيم البحث

اقرأ أيضاً

96 - J.-J. Wen , H. Huang , S.-J. Lee 2018
The discovery of charge- and spin-density-wave (CDW/SDW) orders in superconducting cuprates has altered our perspective on the nature of high-temperature superconductivity (SC). However, it has proven difficult to fully elucidate the relationship bet ween the density wave orders and SC. Here using resonant soft X-ray scattering we study the archetypal cuprate, La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over a broad doping range. We reveal the existence of two types of CDW orders in LSCO, namely CDW stripe order and CDW short-range order (SRO). While the CDW-SRO is suppressed by SC, it is partially transformed into the CDW stripe order with developing SDW stripe order near the superconducting $T_{rm c}$. These findings indicate that the stripe orders and SC are inhomogeneously distributed in the superconducting CuO$_2$ planes of LSCO. This further suggests a new perspective on the putative pair-density-wave order that coexists with SC, SDW, and CDW orders.
We investigate whether the spin or charge degrees of freedom are responsible for the nodal gap in underdoped cuprates by performing inelastic neutron scattering and x-ray diffraction measurements on La$_{2-x}$Sr$_x$CuO$_4$, which is on the edge of th e antiferromagnetic phase. We found that fluctuating incommensurate spin-density-wave (SDW) with a the bottom part of an hourglass dispersion exists even in this magnetic sample. The strongest component of these fluctuations diminishes at the same temperature where the nodal gap opens. X-ray scattering measurements on the same crystal show no signature of charge-density-wave (CDW). Therefore, we suggest that the nodal gap in the electronic band of this cuprate opens due to fluctuating SDW with no contribution from CDW.
We report the dynamics of the cuprate superconductor La$_{2-x}$Sr$_{x}$CuO$_4$ ($x = 0.14$) after intense photoexcitation utilizing near-infrared (800 nm) optical pump-terahertz probe spectroscopy. In the superconducting state at 5 K, we observed a r edshift of the Josephson plasma resonance that sustains for hundreds of picoseconds after the photoexcitation, indicating the destruction of the $c$-axis superconducting coherence. We show that the metastable spectral features can be described by the photoinduced surface heating of the sample. We also demonstrate that the conventional analysis used to extract the spectra of the photoexcited surface region can give rise to artifacts in the nonequilibrium response.
We present results of inelastic light scattering experiments on single-crystalline La$_{2-x}$Sr$_{x}$CuO$_4$ in the doping range $0.00 le x=p le 0.30$ and Tl$_2$Ba$_2$CuO$_{6+delta}$ at $p=0.20$ and $p=0.24$. The main emphasis is placed on the respon se of electronic excitations in the antiferromagnetic phase, in the pseudogap range, in the superconducting state, and in the essentially normal metallic state at $x ge 0.26$, where no superconductivity could be observed. In most of the cases we compare B$_{1g}$ and B$_{2g}$ spectra which project out electronic properties close to $(pi,0)$ and $(pi/2, pi/2)$, respectively. In the channel of electron-hole excitations we find universal behavior in B$_{2g}$ symmetry as long as the material exhibits superconductivity at low temperature. In contrast, there is a strong doping dependence in B$_{1g}$ symmetry: (i) In the doping range $0.20 le p le 0.25$ we observe rapid changes of shape and temperature dependence of the spectra. (ii) In La$_{2-x}$Sr$_{x}$CuO$_4$ new structures appear for $x < 0.13$ which are superposed on the electron-hole continuum. The temperature dependence as well as model calculations support an interpretation in terms of charge-ordering fluctuations. For $x le 0.05$ the response from fluctuations disappears at B$_{1g}$ and appears at B$_{2g}$ symmetry in full agreement with the orientation change of stripes found by neutron scattering. While, with a grain of salt, the particle-hole continuum is universal for all cuprates the response from fluctuating charge order in the range $0.05 le p < 0.16$ is so far found only in La$_{2-x}$Sr$_{x}$CuO$_4$. We conclude that La$_{2-x}$Sr$_{x}$CuO$_4$ is close to static charge order and, for this reason, may have a suppressed $T_c$.
101 - T. Schneider 2021
The superfluid density of overdoped La$_{2-x}$Sr$_x$CuO$_4$ thin films of high quality have been measured with Tc (defined by the onset of the Meissner effect) from 5.1 to 41.6 K by Bosovic et al. Given this Tc the superfluid density shows no clear e vidence of critical fluctuations and no indication of vortex unbinding as T->Tc. Nevertheless, the superfluid density displays the expected behavior for for a quantum phase transition (QPT) in the (3+1)D-xy universality class, rho(T=0)~Tc^2. However, this relation is also a hallmark of dirty superconductors, treated in the mean-field approximation. Here we attempt to clear out the nature of the suppression of ro(T) as Tc->0. Noting that for any finite system the continuous transition will be rounded we perform a finite size scaling analysis. It uncovers that the ro(T) data data are consistent with a finite length limited 3D-xy transition. In some films it is their thickness and in others their inhomogeneity that determines the limiting length. Having established the precondition for the occurrence of a QPT mapping on the (3+1) D-xy model, we explore the consistency with the hallmarks of this transition. In particular with the relations rho(T)/rho(0)=1-ycT/Tc, rho((0)^Tc^2, yc=alpha*Tc/ro(0), where alpha is the coefficient in rho(T)=rho(0)-alphaT as T->0. The emerging agreement with these characteristics points clearly to a quantum fluctuations induced suppression, revealing the crossover from the thermal to the quantum critical regime as Tc ->0. In the classical-quantum mapping it corresponds to a 3D to (3 + 1)D crossover.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا