ترغب بنشر مسار تعليمي؟ اضغط هنا

We find that the triplet Andreev reflection amplitude at the interface between a half-metal and an s-wave superconductor in the presence of a domain wall is significantly enhanced if the half metal is a thin film, rather than an extended magnet. The enhancement is by a factor $l_{rm d}/d$, where $l_{rm d}$ is the width of the domain wall and $d$ the film thickness. We conclude that in a lateral geometry, domain walls can be an effective source of the triplet proximity effect.
We calculate the magnetic-field and temperature dependence of all quantum corrections to the ensemble-averaged conductance of a network of quantum dots. We consider the limit that the dimensionless conductance of the network is large, so that the qua ntum corrections are small in comparison to the leading, classical contribution to the conductance. For a quantum dot network the conductance and its quantum corrections can be expressed solely in terms of the conductances and form factors of the contacts and the capacitances of the quantum dots. In particular, we calculate the temperature dependence of the weak localization correction and show that it is described by an effective dephasing rate proportional to temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا