ترغب بنشر مسار تعليمي؟ اضغط هنا

In very high energy scattering events production of multiple Higgs and electroweak gauge bosons becomes possible. Indeed the perturbative cross section for these processes grows with increasing energy, eventually violating perturbative unitarity. In addition to perturbative unitarity we also examine constraints on high multiplicity processes arising from experimentally measured quantities. These include the shape of the Z-peak and upper limits on scattering cross sections of cosmic rays. We find that the rate of high multiplicity electroweak processes will exceed these upper limits at energies not significantly above what can be currently tested experimentally. This leaves two options: 1) The electroweak sector becomes truly non-perturbative in this regime or 2) Additional physics beyond the Standard Model is needed. In both cases novel physics phenomena must set in before these energies are reached. Based on the measured Higgs mass we estimate the critical energy to be in the range of $10^3$ TeV but we also point out that it can potentially be significantly less than that.
219 - Juergen Berges , , Joerg Jaeckel 2014
Axions and similar very weakly interacting particles are increasingly compelling candidates for the cold dark matter of the universe. Having very low mass and being produced non-thermally in the early Universe, axions feature extremely high occupatio n numbers. It has been suggested that this leads to the formation of a Bose-Einstein condensate with potentially significant impact on observation and direct detection experiments. In this note we aim to clarify that if Bose-Einstein condensation occurs for light and very weakly interacting dark matter particles, it does not happen in thermal equilibrium but is described by a far-from-equilibrium state. In particular we point out that the dynamics is characterized by two very different timescales, such that condensation occurs on a much shorter timescale than full thermalization.
130 - Joerg Jaeckel 2013
Dark matter made from non-thermally produced bosons can have very low, possibly sub-eV masses. Axions and hidden photons are prominent examples of such dark very weakly interacting light (slim) particles (WISPs). A suitable mechanism for their non-th ermal production is the misalignment mechanism. Their dominant interaction with Standard Model (SM) particles is via photons. In this note we want to go beyond these standard examples and discuss a wide range of scalar and pseudo-scalar bosons interacting with SM matter fermions via derivative interactions. Suitably light candidates arise naturally as pseudo-Nambu-Goldstone bosons. In particular we are interested in examples, inspired by familons, whose interactions have a non-trivial flavor structure.
In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles.
Recent progress in realising dynamical supersymmetry breaking allows the construction of simple and calculable models of gauge mediation. We discuss the phenomenology of the particularly minimal case in which the mediation is direct, and show that th ere are generic new and striking predictions. These include new particles with masses comparable to those of the Standard Model superpartners, associated with the pseudo-Goldstone modes of the dynamical SUSY breaking sector. Consequently there is an unavoidable departure from the MSSM. In addition the gaugino masses are typically significantly lighter than the sfermions, and their mass ratios can be different from the pattern dictated by the gauge couplings in standard (i.e. explicit) gauge mediation. We investigate these features in two distinct realisations of the dynamical SUSY breaking sector.
The LHC will probe the nature of the vacuum that determines the properties of particles and the forces between them. Of particular importance is the fact that our current theories allow the Universe to be trapped in a metastable vacuum, which may dec ay in the distant future, changing the nature of matter. This could be the case in the Standard Model if the LHC finds the Higgs boson to be light. Supersymmetry is one favoured extension of the Standard Model which one might invoke to try to avoid such instability. However, many supersymmetric models are also condemned to vacuum decay for different reasons. The LHC will be able to distinguish between different supersymmetric models, thereby testing the stability of the vacuum, and foretelling the fate of the Universe.
Embeddings of the standard model in type II string theory typically contain a variety of U(1) gauge factors arising from D-branes in the bulk. In general, there is no reason why only one of these - the one corresponding to weak hypercharge - should b e massless. Observations require that standard model particles must be neutral (or have an extremely small charge) under additional massless U(1)s, i.e. the latter have to belong to a so called hidden sector. The exchange of heavy messengers, however, can lead to a kinetic mixing between the hypercharge and the hidden-sector U(1)s, that is testable with near future experiments. This provides a powerful probe of the hidden sectors and, as a consequence, of the string theory realisation itself. In the present paper, we show, using a variety of methods, how the kinetic mixing can be derived from the underlying type II string compactification, involving supersymmetric and nonsupersymmetric configurations of D-branes, both in large volumes and in warped backgrounds with fluxes. We first demonstrate by explicit example that kinetic mixing occurs in a completely supersymmetric set-up where we can use conformal field theory techniques. We then develop a supergravity approach which allows us to examine the phenomenon in more general backgrounds, where we find that kinetic mixing is natural in the context of flux compactifications. We discuss the phenomenological consequences for experiments at the low-energy frontier, searching for signatures of light, sub-electronvolt or even massless hidden-sector U(1) gauge bosons and minicharged particles.
We consider the metastable N=1 QCD model of Intriligator, Seiberg and Shih (ISS), deformed by adding a baryon term to the superpotential. This simple deformation causes the spontaneous breaking of the approximate R-symmetry of the metastable vacuum. We then gauge the flavour SU(5)_f and identify it with the parent gauge symmetry of the Standard Model (SM). This implements direct mediation of supersymmetry breaking without the need for an additional messenger sector. A reasonable choice of parameters leads to gaugino masses of the right order. Finally, we speculate that the entire ``ISS x SM model should be interpreted as a magnetic dual of an (unknown) asymptotically free theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا