ترغب بنشر مسار تعليمي؟ اضغط هنا

Will the LHC Look into the Fate of the Universe?

211   0   0.0 ( 0 )
 نشر من قبل Joerg Jaeckel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The LHC will probe the nature of the vacuum that determines the properties of particles and the forces between them. Of particular importance is the fact that our current theories allow the Universe to be trapped in a metastable vacuum, which may decay in the distant future, changing the nature of matter. This could be the case in the Standard Model if the LHC finds the Higgs boson to be light. Supersymmetry is one favoured extension of the Standard Model which one might invoke to try to avoid such instability. However, many supersymmetric models are also condemned to vacuum decay for different reasons. The LHC will be able to distinguish between different supersymmetric models, thereby testing the stability of the vacuum, and foretelling the fate of the Universe.



قيم البحث

اقرأ أيضاً

70 - Mian Wang 2003
Recent observations confirm that our universe is flat and consists of a dark energy component $Omega_{DE}simeq 0.7$. This dark energy is responsible for the cosmic acceleration as well as determines the feature of future evolution of the universe. In this paper, we discuss the dark energy of universe in the framework of scalar-tensor cosmology. It is shown that the dark energy is the main part of the energy density of the gravitational scalar field and the future universe will expand as $a(t)sim t^{1.3}$.
The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck s cale O(TeV), this leads to important changes in the formation and detection of black holes at the the Large Hadron Collider. The number of particles produced in Hawking evaporation decreases substantially. The evaporation ends when the black hole mass is Planck scale, leaving a remnant and a consequent missing energy of order TeV. Furthermore, the minimum energy for black hole formation in collisions is increased, and could even be increased to such an extent that no black holes are formed at LHC energies.
It is very likely that hadronic scattering will enter a new regime at the LHC, as the black-disk limit is reached. This will lead to a severe change in the t dependence of the real part and of the slope of the elastic scattering amplitude, and in tur n this may bias the measurement of the total cross section. We examine this issue, and suggest new strategies to test the reliability of the total cross section measurements.
The arXiv is the most popular preprint repository in the world. Since its inception in 1991, the arXiv has allowed researchers to freely share publication-ready articles prior to formal peer review. The growth and the popularity of the arXiv emerged as a result of new technologies that made document creation and dissemination easy, and cultural practices where collaboration and data sharing were dominant. The arXiv represents a unique place in the history of research communication and the Web itself, however it has arguably changed very little since its creation. Here we look at the strengths and weaknesses of arXiv in an effort to identify what possible improvements can be made based on new technologies not previously available. Based on this, we argue that a modern arXiv might in fact not look at all like the arXiv of today.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا