ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a high-pressure study of orthorhombic rare-earth manganites AMnO3 using Raman scattering (for A = Pr, Nd, Sm, Eu, Tb and Dy) and synchrotron X-ray diffraction (for A = Pr, Sm, Eu, and Dy). In all cases, a structural and insulator-to-metal t ransition was evidenced, with a critical pressure that depends on the A-cation size. We analyze the compression mechanisms at work in the different manganites via the pressure dependence of the lattice parameters, the shear strain in the a-c plane, and the Raman bands associated with out-of-phase MnO6 rotations and in-plane O2 symmetric stretching modes. Our data show a crossover across the rare-earth series between two different kinds of behavior. For the smallest A-cations, the compression is nearly isotropic in the ac plane, with presumably only very slight changes of tilt angles and Jahn-Teller distortion. As the radius of the A-cation increases, the pressure-induced reduction of Jahn-Teller distortion becomes more pronounced and increasingly significant as a compression mechanism, while the pressure-induced bending of octahedra chains becomes conversely less pronounced. We finally discuss our results in the light of the notion of chemical pressure, and show that the analogy with hydrostatic pressure works quite well for manganites with small A-cations but can be misleading with large A-cations.
Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films, with different thickness ranging from 20 nm up to 330 nm, were deposited on (100)-oriented strontium titanate (STO) substrates by pulsed laser deposition, and their structure and morphology characterized at room temperature. Magnetic and electric transport properties of the as-processed thin films reveal an abnormal behavior in the temperature dependent magnetization M(T) below the antiferrodistortive STO phase transition (TSTO) and also an anomaly in the magnetoresistance and electrical resistivity close to the same temperature. Up to 100 nm LSMO thin films, an in-excess magnetization and pronounced changes in the coercivity are evidenced, achieved through the interface-mediated magnetoelastic coupling with antiferrodistortive domain wall movement occurring below TSTO. Contrarily, for thicker LSMO thin films, above 100 nm, an in-defect magnetization is observed. This reversed behavior can be understood within the emergence in the upper layer of the film, observed by high resolution transmission electron microscopy, of a branched structure needed to relax elastic energy stored in the film which leads to randomly oriented magnetic domain reconstructions. For enough high-applied magnetic fields, as thermodynamic equilibrium is reached, a fully suppression of the anomalous magnetization occurs, wherein the temperature dependence of the magnetization starts to follow the expected Brillouin behavior.
This work reports on magnetic, dielectric, thermodynamic and magnetoelectric properties of Gd$_{1-x}$Y$_{x}$MnO$_{3}$, with 0 leq x leq 0.4, with emphasis on the (x, T) phase diagram, towards unraveling the role of the driving mechanisms in stabilizi ng both magnetic and ferroelectric orderings. The (x, T) phase diagram reflects the effect of lattice distortions induced by the substitution of $Gd^{3+}$ ion by smaller $Y^{3+}$ ion, which gradually unbalances the antiferromagnetic against the ferromagnetic exchange interactions, enabling the emergence of ferroelectricity for higher concentrations of yttrium. For $x leq 0.1$, the paramagnetic phase is followed by a presumably incommensurate collinear antiferromagnetic phase, then a weak ferromagnetic canted A-type antiferromagnetic ordering is established at lower temperatures.For $0.2 leq x leq 0.4$, a different phase sequence is obtained. The canted A-type antiferromagnetic arrangement is no more stable, and instead a pure antiferromagnetic ordering is stabilized below T$_{lock}$ $approx$ 14 - 17 K, with an improper ferroelectric character. From these results, a cycloid modulated spin arrangement at low temperatures is proposed, accordingly to the inverse Dzyaloshinskii Moriya model. Anomalous temperature dependence of the dipolar relaxation energy and magnetization evidence for structural and magnetic changes occurring at $T* approx 22 - 28 K$, for $0.1 leq x leq 0.4$.
We present a study of the effect of very high pressure on the orthorhombic perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to 53.2 GPa. The experimental results yield a structural and insulator-to-metal phase transition c lose to 50 GPa, from an orthorhombic to a metrically cubic structure. The phase transition is of first order with a pressure hysteresis of about 6 GPa. The observed behavior under very high pressure might well be a general feature in rare-earth manganites.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا