ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we study $k$-noncrossing RNA structures with minimum arc-length 4 and at most $k-1$ mutually crossing bonds. Let ${sf T}_{k}^{[4]}(n)$ denote the number of $k$-noncrossing RNA structures with arc-length $ge 4$ over $n$ vertices. We prov e (a) a functional equation for the generating function $sum_{nge 0}{sf T}_{k}^{[4]}(n)z^n$ and (b) derive for $kle 9$ the asymptotic formula ${sf T}_{k}^{[4]}(n)sim c_k n^{-((k-1)^2+(k-1)/2)} gamma_k^{-n}$. Furthermore we explicitly compute the exponential growth rates $gamma_k^{-1}$ and asymptotic formulas for $4le kle 9$.
In this paper we study random induced subgraphs of the binary $n$-cube, $Q_2^n$. This random graph is obtained by selecting each $Q_2^n$-vertex with independent probability $lambda_n$. Using a novel construction of subcomponents we study the largest component for $lambda_n=frac{1+chi_n}{n}$, where $epsilonge chi_nge n^{-{1/3}+ delta}$, $delta>0$. We prove that there exists a.s. a unique largest component $C_n^{(1)}$. We furthermore show that $chi_n=epsilon$, $| C_n^{(1)}|sim alpha(epsilon) frac{1+chi_n}{n} 2^n$ and for $o(1)=chi_nge n^{-{1/3}+delta}$, $| C_n^{(1)}| sim 2 chi_n frac{1+chi_n}{n} 2^n$ holds. This improves the result of cite{Bollobas:91} where constant $chi_n=chi$ is considered. In particular, in case of $lambda_n=frac{1+epsilon} {n}$, our analysis implies that a.s. a unique giant component exists.
In this paper we enumerate $k$-noncrossing tangled-diagrams. A tangled-diagram is a labeled graph whose vertices are $1,...,n$ have degree $le 2$, and are arranged in increasing order in a horizontal line. Its arcs are drawn in the upper halfplane wi th a particular notion of crossings and nestings. Our main result is the asymptotic formula for the number of $k$-noncrossing tangled-diagrams $T_{k}(n) sim c_k n^{-((k-1)^2+(k-1)/2)} (4(k-1)^2+2(k-1)+1)^n$ for some $c_k>0$.
In this paper we show how to express RNA tertiary interactions via the concepts of tangled diagrams. Tangled diagrams allow to formulate RNA base triples and pseudoknot-interactions and to control the maximum number of mutually crossing arcs. In part icular we study two subsets of tangled diagrams: 3-noncrossing tangled-diagrams with $ell$ vertices of degree two and 2-regular, 3-noncrossing partitions (i.e. without arcs of the form $(i,i+1)$). Our main result is an asymptotic formula for the number of 2-regular, 3-noncrossing partitions, denoted by $p_{3,2}(n)$, 3-noncrossing partitions over $[n]$. The asymptotic formula is derived by the analytic theory of singular difference equations due to Birkhoff-Trjitzinsky. Explicitly, we prove the formula $p_{3,2}(n+1)sim K 8^{n}n^{-7}(1+c_{1}/n+c_{2}/n^2+c_3/n^3)$ where $K,c_i$, $i=1,2,3$ are constants.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا