ﻻ يوجد ملخص باللغة العربية
In this paper we study random induced subgraphs of the binary $n$-cube, $Q_2^n$. This random graph is obtained by selecting each $Q_2^n$-vertex with independent probability $lambda_n$. Using a novel construction of subcomponents we study the largest component for $lambda_n=frac{1+chi_n}{n}$, where $epsilonge chi_nge n^{-{1/3}+ delta}$, $delta>0$. We prove that there exists a.s. a unique largest component $C_n^{(1)}$. We furthermore show that $chi_n=epsilon$, $| C_n^{(1)}|sim alpha(epsilon) frac{1+chi_n}{n} 2^n$ and for $o(1)=chi_nge n^{-{1/3}+delta}$, $| C_n^{(1)}| sim 2 chi_n frac{1+chi_n}{n} 2^n$ holds. This improves the result of cite{Bollobas:91} where constant $chi_n=chi$ is considered. In particular, in case of $lambda_n=frac{1+epsilon} {n}$, our analysis implies that a.s. a unique giant component exists.
In this note, we study large deviations of the number $mathbf{N}$ of intercalates ($2times2$ combinatorial subsquares which are themselves Latin squares) in a random $ntimes n$ Latin square. In particular, for constant $delta>0$ we prove that $Pr(mat
Given a large graph $H$, does the binomial random graph $G(n,p)$ contain a copy of $H$ as an induced subgraph with high probability? This classical question has been studied extensively for various graphs $H$, going back to the study of the independe
We study Hamiltonicity in random subgraphs of the hypercube $mathcal{Q}^n$. Our first main theorem is an optimal hitting time result. Consider the random process which includes the edges of $mathcal{Q}^n$ according to a uniformly chosen random orderi
The main contribution of this article is an asymptotic expression for the rate associated with moderate deviations of subgraph counts in the ErdH{o}s-Renyi random graph $G(n,m)$. Our approach is based on applying Freedmans inequalities for the probab
It is an intriguing question to see what kind of information on the structure of an oriented graph $D$ one can obtain if $D$ does not contain a fixed oriented graph $H$ as a subgraph. The related question in the unoriented case has been an active are