ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - J. Hu , X. Liu , C.L. Yue 2015
The extraordinary properties of two dimensional (2D) materials, such as the extremely high carrier mobility in graphene and the large direct band gaps in transition metal dichalcogenides MX2 (M = Mo or W, X = S, Se) monolayers, highlight the crucial role quantum confinement can have in producing a wide spectrum of technologically important electronic properties. Currently one of the highest priorities in the field is to search for new 2D crystalline systems with structural and electronic properties that can be exploited for device development. In this letter, we report on the unusual quantum transport properties of the 2D ternary transition metal chalcogenide - Nb3SiTe6. We show that the micaceous nature of Nb3SiTe6 allows it to be thinned down to one-unit-cell thick 2D crystals using microexfoliation technique. When the thickness of Nb3SiTe6 crystal is reduced below a few unit-cells thickness, we observed an unexpected, enhanced weak-antilocalization signature in magnetotransport. This finding provides solid evidence for the long-predicted suppression of electron-phonon interaction caused by the crossover of phonon spectrum from 3D to 2D.
76 - J. Hu , T.J. Liu , B. Qian 2011
We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon cont ribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity.
In transformation optics, the space transformation is viewed as the deformation of a material. The permittivity and permeability tensors in the transformed space are found to correlate with the deformation field of the material. By solving the Laplac es equation, which describes how the material will deform during a transformation, we can design electromagnetic cloaks with arbitrary shapes if the boundary conditions of the cloak are considered. As examples, the material parameters of the spherical and elliptical cylindrical cloaks are derived based on the analytical solutions of the Laplaces equation. For cloaks with irregular shapes, the material parameters of the transformation medium are determined numerically by solving the Laplaces equation. Full-wave simulations based on the Maxwells equations validate the designed cloaks. The proposed method can be easily extended to design other transformation materials for electromagnetic and acoustic wave phenomena.
We propose a general method to evaluate the material parameters for arbitrary shape transformation media. By solving the original coordinates in the transformed region via Laplaces equations, we can obtain the deformation field numerically, in turn t he material properties of the devices to be designed such as cloaks, rotators or concentrators with arbitrary shape. Devices which have non-fixed outer boundaries, such as beam guider, can also be designed by the proposed method. Examples with full wave simulation are given for illustration. In the end, wave velocity and energy change in the transformation media are discussed with help of the deformation view.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا