ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social conne ctions and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrats law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008)]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
A common goal in the study of high dimensional and complex system is to model the system by a low order representation. In this letter we propose a general approach for assessing the quality of a reduced order model for high dimensional chaotic syste ms. The key of this approach is the use of optimal shadowing, combined with dimensionality reduction techniques. Rather than quantify the quality of a model based on the quality of predictions, which can be irrelevant for chaotic systems since even excellent models can do poorly, we suggest that a good model should allow shadowing by modeled data for long times; this principle leads directly to an optimal shadowing criterion of model reduction. This approach overcomes the usual difficulties encountered by traditional methods which either compare systems of the same size by normed-distance in the functional space, or measure how close an orbit generated by a model is to the observed data. Examples include interval arithmetic computations to validate the optimal shadowing.
62 - Jie Sun , Erik M. Bollt , 2009
Full understanding of synchronous behavior in coupled dynamical systems beyond the identical case requires an explicit construction of the generalized synchronization manifold, whether we wish to compare the systems, or to understand their stability. Nonetheless, while synchronization has become an extremely popular topic, the bulk of the research in this area has been focused on the identical case, specifically because its invariant manifold is simply the identity function, and there have yet to be any generally workable methods to compute the generalized synchronization manifolds for non-identical systems. Here, we derive time dependent PDEs whose stationary solution mirrors exactly the generalized synchronization manifold, respecting its stability. We introduce a novel method for dealing with subtle issues with boundary conditions in the numerical scheme to solve the PDE, and we develop first order expansions close to the identical case. We give several examples of increasing sophistication, including coupled non-identical Van der Pol oscillators. By using the manifold equation, we also discuss the design of coupling to achieve desired synchronization.
We derive a master stability function (MSF) for synchronization in networks of coupled dynamical systems with small but arbitrary parametric variations. Analogous to the MSF for identical systems, our generalized MSF simultaneously solves the linear stability problem for near-synchronous states (NSS) for all possible connectivity structures. We also derive a general sufficient condition for stable near-synchronization and show that the synchronization error scales linearly with the magnitude of parameter variations.Our analysis underlines significant roles played by the Laplacian eigenvectors in the study of network synchronization of near-identical systems.
We derive variational equations to analyze the stability of synchronization for coupled near-identical oscillators. To study the effect of parameter mismatch on the stability in a general fashion, we define master stability equations and associated m aster stability functions, which are independent of the network structure. In particular, we present several examples of coupled near-identical Lorenz systems configured in small networks (a ring graph and sequence networks) with a fixed parameter mismatch and a large Barabasi-Albert scale-free network with random parameter mismatch. We find that several different network architectures permit similar results despite various mismatch patterns.
In this paper we derive an updating scheme for calculating some important network statistics such as degree, clustering coefficient, etc., aiming at reduce the amount of computation needed to track the evolving behavior of large networks; and more im portantly, to provide efficient methods for potential use of modeling the evolution of networks. Using the updating scheme, the network statistics can be computed and updated easily and much faster than re-calculating each time for large evolving networks. The update formula can also be used to determine which edge/node will lead to the extremal change of network statistics, providing a way of predicting or designing evolution rule of networks.
In this paper we raise the question of how to compress sparse graphs. By introducing the idea of redundancy, we find a way to measure the overlap of neighbors between nodes in networks. We exploit symmetry and information by making use of the overlap in neighbors and analyzing how information is reduced by shrinking the network and using the specific data structure we created, we generalize the problem of compression as an optimization problem on the possible choices of orbits. To find a reasonably good solution to this problem we use a greedy algorithm to determine the orbit of symmetry identifications, to achieve compression. Some example implementations of our algorithm are illustrated and analyzed.
240 - Jie Sun , Peng Jin , Zhanguo Wang 2007
Self-assembled semiconductor quantum dot is a new type of artificially designed and grown function material which exhibits quantum size effect, quantum interference effect, surface effect, quantum tunneling-Coulumb-blockade effect and nonlinear optic al effect. Due to advantages like less crystal defects and relatively simpler fabrication technology, that material may be of important value in future nanoelectronic device researches. In the order of vertical transport, lateral transport and charge storage, this paper gives a brief introduction of recent advances in the electronic properties of that material and an analysis of problems and perspectives.
137 - Jie Sun , Peng Jin , Chang Zhao 2007
Molecular beam epitaxy is employed to manufacture self-assembled InAs/GaAs quantum dot Schottky resonant tunneling diodes. By virtue of a thin AlAs insertion barrier, the thermal current is effectively reduced and electron resonant tunneling through quantum dots under both forward and reverse biased conditions is observed at relatively high temperature of 77K. The ground states of quantum dots are found to be at ~0.19eV below the conduction band of GaAs matrix. The theoretical computations are in conformity with experimental data.
81 - Jie Sun , Ruoyuan Li , Chang Zhao 2007
Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. Resonant tunneling current is superimposed on the thermal current, and they make up the total electron transport in devices. Steps in cu rrent-voltage characteristics and peaks in capacitance-voltage characteristics are explained as electron resonant tunneling via quantum dots at 77K or 300K, and this is the first time that resonant tunneling is observed at room temperature in III-V quantum-dot materials. Hysteresis loops in the curves are attributed to hot electron injection/emission process of quantum dots, which indicates the concomitant charging/discharging effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا