ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinearity in macroscopic mechanical system plays a crucial role in a wide variety of applications, including signal transduction and processing, synchronization, and building logical devices. However, it is difficult to generate nonlinearity due t o the fact that macroscopic mechanical systems follow the Hookes law and response linearly to external force, unless strong drive is used. Here we propose and experimentally realize a record-high nonlinear response in macroscopic mechanical system by exploring the anharmonicity in deforming a single chemical bond. We then demonstrate the tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize a cubic elastic constant of mathversion{bold}$2 times 10^{18}~{rm N}/{rm m^3}$, many orders of magnitude larger in strength than reported previously. This enables us to observe vibrational bistate transitions of the resonator driven by the weak Brownian thermal noise at 6~K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
We experimentally resolve several weakly coupled nuclear spins in diamond using a series of novelly designed dynamical decoupling controls. Some nuclear spin signals, hidden by decoherence under ordinary dynamical decoupling controls, are shifted for ward in time domain to the coherence time range and thus rescued from the fate of being submerged by the noisy spin bath. In this way, more and remoter single nuclear spins are resolved. Additionally, the field of detection can be continuously tuned on sub-nanoscale. This method extends the capacity of nanoscale magnetometry and may be applicable in other systems for high-resolution noise spectroscopy.
Nitrogen-vacancy centers in diamond are ideal platforms for quantum simulation, which allows one to handle problems that are intractable theoretically or experimentally. Here we propose a digital quantum simulation scheme to simulate the quantum phas e transition occurring in an ultrathin topological insulator film placed in a parallel magnetic field [Zyuzin textit{et al.}, Phys. Rev. B textbf{83}, 245428 (2011)]. The quantum simulator employs high quality spin qubits achievable in nitrogen-vacancy centers and can be realized with existing technology. The problem can be mapped onto the Hamiltonian of two entangled qubits represented by the electron and nuclear spins. The simulation uses the Trotter algorithm, with an operation time of the order of 100 $mu$s for each individual run.
Precise control of an open quantum system is critical to quantum information processing, but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally at room temperature a type of dy namically corrected gates on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by environment nuclear spin bath is reduced from being the second-order to the sixth-order of the noise to control field ratio, which offers greater efficiency in reducing the infidelity by reducing the noise level. The decay time of the coherent oscillation driven by dynamically corrected gates is shown to be two orders of magnitude longer than the dephasing time, and is essentially limited by spin-lattice relaxation. The infidelity of DCG, which is actually constrained by the decay time, reaches $4times 10^{-3}$ at room temperature and is further reducible by 2-3 orders of magnitudes via lowering temperature. The greatly reduced noise dependence of infidelity and the uttermost extension of the coherent time mark an important step towards fault-tolerant quantum computation in realistic systems.
Universal sensing the motion of mechanical resonators with high precision and low back-action is of paramount importance in ultra-weak signal detection which plays a fundamental role in modern physics. Here we present a universal scheme that transfer mechanically the motion of the resonator not directly measurable to the one can be precisely measured using mechanical frequency conversion. Demonstration of the scheme at room temperature shows that both the motion imprecision and the back-action force are below the intrinsic level of the objective resonator, which agree well with our theoretical prediction. The scheme developed here provides an effective interface between an arbitrary mechanical resonator and a high quantum efficient displacement sensor, and is expected to find extensive applications in high-demanding mechanical-based force measurements.
Under resonant conditions, a long sequence of landau-zener transitions can lead to Rabi oscillations. Using a nitrogen-vacancy (NV) center spin in diamond, we investigated the interference between more than 100 Landau-Zener processes. We observed the new type of Rabi oscillations of the electron spin resulting from the interference between successive Landau-Zener processes in various regimes, including both slow and fast passages. The combination of the control techniques and the favorable coherent properties of NV centers provides an excellent experimental platform to study a variety of quantum dynamical phenomena.
210 - Jian Pan , Yudong Cao , Xiwei Yao 2013
Quantum computers have the potential of solving certain problems exponentially faster than classical computers. Recently, Harrow, Hassidim and Lloyd proposed a quantum algorithm for solving linear systems of equations: given an $Ntimes{N}$ matrix $A$ and a vector $vec b$, find the vector $vec x$ that satisfies $Avec x = vec b$. It has been shown that using the algorithm one could obtain the solution encoded in a quantum state $|x$ using $O(log{N})$ quantum operations, while classical algorithms require at least O(N) steps. If one is not interested in the solution $vec{x}$ itself but certain statistical feature of the solution ${x}|M|x$ ($M$ is some quantum mechanical operator), the quantum algorithm will be able to achieve exponential speedup over the best classical algorithm as $N$ grows. Here we report a proof-of-concept experimental demonstration of the quantum algorithm using a 4-qubit nuclear magnetic resonance (NMR) quantum information processor. For all the three sets of experiments with different choices of $vec b$, we obtain the solutions with over 96% fidelity. This experiment is a first implementation of the algorithm. Because solving linear systems is a common problem in nearly all fields of science and engineering, we will also discuss the implication of our results on the potential of using quantum computers for solving practical linear systems.
190 - Xi Kong , Mingjun Shi , Fazhan Shi 2012
Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for by some realistic models with hidden variables. There are, however, two powerful theorems agains t the hidden-variable theories showing that certain quantum features cannot be reproduced based on two rationale premises of locality, Bells theorem, and noncontextuality, due to Bell, Kochen and Specker (BKS). Noncontextuality is independent of nonlocality, and the contextuality manifests itself even in a single object. Here we report an experimental verification of quantum contextuality by a single spin-1 electron system at room temperature. Such a three-level system is indivisible and then we close the compatibility loophole which exists in the experiments performed on bipartite systems. Our results confirm the quantum contextuality to be the intrinsic property of single particles.
Quantum correlation quantified by quantum discord has been demonstrated experimentally as important physical resources in quantum computation and communication for some cases even without the presence of entanglement. However, since the interaction b etween the quantum system and the noisy environment is inevitable, it is essential to protect quantum correlation from lost in the environment and to characterize its dynamical behavior in the real open systems. Here we showed experimentally in the solid-state P:Si system the existence of a stable interval for the quantum correlation in the beginning until a critical time $t_c approx 166$ ns of the transition from classical to quantum decoherence. To protect the quantum correlation, we achieved the extension of the critical time by 50 times to $8 mu$s by applying a two-flip dynamical decoupling (DD) pulse sequence. Moreover, we observed the phenomenon of the revival of quantum correlation, as well as classical correlation. The experimental observation of a non-decay interval for quantum correlation and the great extension of it in an important solid-state system with genuine noise makes the use quantum discord as physical resources in quantum information processing more practicable.
To implement reliable quantum information processing, quantum gates have to be protected together with the qubits from decoherence. Here we demonstrate experimentally on nitrogen-vacancy system that by using continuous wave dynamical decoupling metho d, not only the coherence time is prolonged by about 20 times, but also the quantum gates is protected for the duration of controlling time. This protocol shares the merits of retaining the superiority of prolonging the coherence time and at the same time easily combining with quantum logic tasks. It is expected to be useful in task where duration of quantum controlling exceeds far beyond the dephasing time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا