ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Giant and Tunable Nonlinearity in a Macroscopic Mechanical Resonator from Chemical Bonding Force

371   0   0.0 ( 0 )
 نشر من قبل Jiangfeng Du
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinearity in macroscopic mechanical system plays a crucial role in a wide variety of applications, including signal transduction and processing, synchronization, and building logical devices. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow the Hookes law and response linearly to external force, unless strong drive is used. Here we propose and experimentally realize a record-high nonlinear response in macroscopic mechanical system by exploring the anharmonicity in deforming a single chemical bond. We then demonstrate the tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize a cubic elastic constant of mathversion{bold}$2 times 10^{18}~{rm N}/{rm m^3}$, many orders of magnitude larger in strength than reported previously. This enables us to observe vibrational bistate transitions of the resonator driven by the weak Brownian thermal noise at 6~K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

قيم البحث

اقرأ أيضاً

We propose two measurement-based schemes to cool a nonlinear mechanical resonator down to energies close to that of its ground state. The protocols rely on projective measurements of a spin degree of freedom, which interacts with the resonator throug h a Jaynes-Cummings interaction. We show the performance of these cooling schemes, that can be either concatenated -- i.e. built by repeating a sequence of dynamical evolutions followed by projective measurements -- or single-shot. We characterize the performance of both cooling schemes with numerical simulations, and pinpoint the effects of decoherence and noise mechanisms. Due to the ubiquity and experimental relevance of the Jaynes-Cummings model, we argue that our results can be applied in a variety of experimental setups.
Entanglement is a vital property of multipartite quantum systems, characterised by the inseparability of quantum states of objects regardless of their spatial separation. Generation of entanglement between increasingly macroscopic and disparate syste ms is an ongoing effort in quantum science which enables hybrid quantum networks, quantum-enhanced sensing, and probing the fundamental limits of quantum theory. The disparity of hybrid systems and the vulnerability of quantum correlations have thus far hampered the generation of macroscopic hybrid entanglement. Here we demonstrate, for the first time, generation of an entangled state between the motion of a macroscopic mechanical oscillator and a collective atomic spin oscillator, as witnessed by an Einstein-Podolsky-Rosen variance below the separability limit, $0.83 pm 0.02<1$. The mechanical oscillator is a millimeter-size dielectric membrane and the spin oscillator is an ensemble of $10^9$ atoms in a magnetic field. Light propagating through the two spatially separated systems generates entanglement due to the collective spin playing the role of an effective negative-mass reference frame and providing, under ideal circumstances, a backaction-free subspace; in the experiment, quantum backaction is suppressed by 4.6 dB. Our results pave the road towards measurement of motion beyond the standard quantum limits of sensitivity with applications in force, acceleration,and gravitational wave detection, as well as towards teleportation-based protocols in hybrid quantum networks.
We theoretically analyse the cooling dynamics of a high-Q mode of a mechanical resonator, when the structure is also an optical cavity and is coupled with a NV center. The NV center is driven by a laser and interacts with the cavity photon field and with the strain field of the mechanical oscillator, while radiation pressure couples mechanical resonator and cavity field. Starting from the full master equation we derive the rate equation for the mechanical resonators motion, whose coefficients depend on the system parameters and on the noise sources. We then determine the cooling regime, the cooling rate, the asymptotic temperatures, and the spectrum of resonance fluorescence for experimentally relevant parameter regimes. For these parameters, we consider an electronic transition, whose linewidth allows one to perform sideband cooling, and show that the addition of an optical cavity in general does not improve the cooling efficiency. We further show that pure dephasing of the NV centers electronic transitions can lead to an improvement of the cooling efficiency.
The recent maturation of hybrid quantum devices has led to significant enhancements in the functionality of a wide variety of quantum systems. In particular, harnessing mechanical resonators for manipulation and control has expanded the use of two-le vel systems in quantum information science and quantum sensing. In this letter, we report on a monolithic hybrid quantum device in which strain fields associated with resonant vibrations of a diamond cantilever dynamically control the optical transitions of a single nitrogen-vacancy (NV) defect center in diamond. We quantitatively characterize the strain coupling to the orbital states of the NV center, and with mechanical driving, we observe NV-strain couplings exceeding 10 GHz. Furthermore, we use this strain-mediated coupling to match the frequency and polarization dependence of the zero-phonon lines of two spatially separated and initially distinguishable NV centers. The experiments demonstrated here mark an important step toward engineering a quantum device capable of realizing and probing the dynamics of non-classical states of mechanical resonators, spin-systems, and photons.
Entanglement generation at a macroscopic scale offers an exciting avenue to develop new quantum technologies and study fundamental physics on a tabletop. Cavity quantum optomechanics provides an ideal platform to generate and exploit such phenomena o wing to the precision of quantum optics combined with recent experimental advances in optomechanical devices. In this work, we propose schemes operating outside the resolved-sideband regime, to prepare and verify both optical-mechanical and mechanical-mechanical entanglement. Our schemes employ pulsed interactions with a duration much less than the mechanical period and, together with homodyne measurements, can both generate and characterize these types of entanglement. To improve the performance of our schemes, a precooling stage comprising prior pulses can be utilized to increase the amount of entanglement prepared, and local optical squeezers may be used to provide resilience against open-system dynamics. The entanglement generated by our schemes is quantified using the logarithmic negativity and is analysed with respect to the strength of the pulsed optomechanical interactions for realistic experimental scenarios including mechanical decoherence and optical loss. Two separate schemes for mechanical entanglement generation are introduced and compared: one scheme based on an optical interferometric design, and the other comprising sequential optomechanical interactions. The pulsed nature of our protocols provides more direct access to these quantum correlations in the time domain, with applications including quantum metrology and tests of quantum decoherence. By considering a parameter set based on recent experiments, the feasibility to generate significant entanglement with our schemes, even with large optical losses, is demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا