ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of core-collapse supernovae (CCSNe) result in successful explosions once the neutrino luminosity exceeds a critical curve, and recent simulations indicate that turbulence further enables explosion by reducing this critical neutrino lumino sity. We propose a theoretical framework to derive this result and take the first steps by deriving the governing mean-field equations. Using Reynolds decomposition, we decompose flow variables into background and turbulent flows and derive self-consistent averaged equations for their evolution. As basic requirements for the CCSN problem, these equations naturally incorporate steady-state accretion, neutrino heating and cooling, non-zero entropy gradients, and turbulence terms associated with buoyant driving, redistribution, and dissipation. Furthermore, analysis of two-dimensional (2D) CCSN simulations validate these Reynolds-averaged equations, and we show that the physics of turbulence entirely accounts for the differences between 1D and 2D CCSN simulations. As a prelude to deriving the reduction in the critical luminosity, we identify the turbulent terms that most influence the conditions for explosion. Generically, turbulence equations require closure models, but these closure models depend upon the macroscopic properties of the flow. To derive a closure model that is appropriate for CCSNe, we cull the literature for relevant closure models and compare each with 2D simulations. These models employ local closure approximations and fail to reproduce the global properties of neutrino-driven turbulence. Motivated by the generic failure of these local models, we propose an original model for turbulence which incorporates global properties of the flow. This global model accurately reproduces the turbulence profiles and evolution of 2D CCSN simulations.
We investigate the criteria for successful core-collapse supernova explosions by the neutrino mechanism. We find that a critical-luminosity/mass-accretion-rate condition distinguishes non-exploding from exploding models in hydrodynamic one-dimensiona l (1D) and two-dimensional (2D) simulations. We present 95 such simulations that parametrically explore the dependence on neutrino luminosity, mass accretion rate, resolution, and dimensionality. While radial oscillations mediate the transition between 1D accretion (non-exploding) and exploding simulations, the non-radial standing accretion shock instability characterizes 2D simulations. We find that it is useful to compare the average dwell time of matter in the gain region with the corresponding heating timescale, but that tracking the residence time distribution function of tracer particles better describes the complex flows in multi-dimensional simulations. Integral quantities such as the net heating rate, heating efficiency, and mass in the gain region decrease with time in non-exploding models, but for 2D exploding models, increase before, during, and after explosion. At the onset of explosion in 2D, the heating efficiency is $sim$2% to $sim$5% and the mass in the gain region is $sim$0.005 M$_{sun}$ to $sim$0.01 M$_{sun}$. Importantly, we find that the critical luminosity for explosions in 2D is $sim$70% of the critical luminosity required in 1D. This result is not sensitive to resolution or whether the 2D computational domain is a quadrant or the full 180$^{circ}$. We suggest that the relaxation of the explosion condition in going from 1D to 2D (and to, perhaps, 3D) is of a general character and is not limited by the parametric nature of this study.
In this paper, we describe a new hydrodynamics code for 1D and 2D astrophysical simulations, BETHE-hydro, that uses time-dependent, arbitrary, unstructured grids. The core of the hydrodynamics algorithm is an arbitrary Lagrangian-Eulerian (ALE) appro ach, in which the gradient and divergence operators are made compatible using the support-operator method. We present 1D and 2D gravity solvers that are finite differenced using the support-operator technique, and the resulting system of linear equations are solved using the tridiagonal method for 1D simulations and an iterative multigrid-preconditioned conjugate-gradient method for 2D simulations. Rotational terms are included for 2D calculations using cylindrical coordinates. We document an incompatibility between a subcell pressure algorithm to suppress hourglass motions and the subcell remapping algorithm and present a modified subcell pressure scheme that avoids this problem. Strengths of this code include a straightforward structure, enabling simple inclusion of additional physics packages, the ability to use a general equation of state, and most importantly, the ability to solve self-gravitating hydrodynamic flows on time-dependent, arbitrary grids. In what follows, we describe in detail the numerical techniques employed and, with a large suite of tests, demonstrate that BETHE-hydro finds accurate solutions with 2$^{nd}$-order convergence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا