ترغب بنشر مسار تعليمي؟ اضغط هنا

There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of SDSS galaxies, Mdust $propto$ SFR$^{1.11}$ (Da Cunha et al. 2010). Here we extend the Mdust-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) A star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the Mdust-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the Mdust-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., $sim 0.9$) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original Mdust-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.
105 - Jens Hjorth 2013
The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bi-polar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star while the 56Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper I summarise the observational status of the supernova/gamma-ray burst connection in the context of the engine picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A -- with its luminous supernova but intermediate high-energy luminosity -- as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insight into supernova explosions in general.
Unusual extinction curves of high-redshift QSOs have been taken as evidence that dust is primarily produced by supernovae at high redshift. In particular, the 3000 A Todini-Ferrara-Maiolino kink in the extinction curve of the z = 6.20 SDSS J1048+4637 has been attributed to supernova dust. Here we discuss the challenges in inferring robust extinction curves of high-redshift QSOs and critically assess previous claims of detection of supernova dust. In particular, we address the sensitivity to the choice of intrinsic QSO spectrum, the need for a long wavelength baseline, and the drawbacks in fitting theoretical extinction curves. In a sample of 21 QSOs at z ~ 6 we detect significant ultraviolet extinction using existing broad-band optical, near-infrared, and Spitzer photometry. The median extinction curve is consistent with a Small Magellanic Cloud curve with A_1450 ~ 0.7 mag and does not exhibit any conspicuous (restframe) 2175 A or 3000 A features. For two QSOs, SDSS J1044-0125 at z = 5.78 and SDSS J1030+0524 at z = 6.31, we further present X-shooter spectra covering the wavelength range 0.9-2.5 um. The resulting non-parametric extinction curves do not exhibit the 3000 A kink. Finally, in a re-analysis of literature spectra of SDSS J1048+4637, we do not find evidence for a conspicuous kink. We conclude that the existing evidence for a 3000 A feature is weak and that the overall dust properties at high and low redshift show no significant differences. This, however, does not preclude supernovae from dominating the dust budget at high redshift.
GRB-selected galaxies are broadly known to be faint, blue, young, star-forming dwarf galaxies. This insight, however, is based in part on heterogeneous samples of optically selected, lower-redshift galaxies. To study the statistical properties of GRB -selected galaxies we here introduce The Optically Unbiased GRB Host (TOUGH) complete sample of 69 X-ray selected Swift GRB host galaxies spanning the redshift range 0.03-6.30 and summarise the first results of a large observational survey of these galaxies.
Long-duration gamma-ray bursts (GRBs) are powerful tracers of star-forming galaxies. We have defined a homogeneous subsample of 69 Swift GRB-selected galaxies spanning a very wide redshift range. Special attention has been devoted to making the sampl e optically unbiased through simple and well-defined selection criteria based on the high-energy properties of the bursts and their positions on the sky. Thanks to our extensive follow-up observations, this sample has now achieved a comparatively high degree of redshift completeness, and thus provides a legacy sample, useful for statistical studies of GRBs and their host galaxies. In this paper we present the survey design and summarize the results of our observing program conducted at the ESO Very Large Telescope (VLT) aimed at obtaining the most basic properties of galaxies in this sample, including a catalog of R and Ks magnitudes and redshifts. We detect the host galaxies for 80 % of the GRBs in the sample, although only 42 % have Ks-band detections, which confirms that GRB-selected host galaxies are generally blue. The sample is not uniformly blue, however, with two extremely red objects detected. Moreover, galaxies hosting GRBs with no optical/NIR afterglows, whose identification therefore relies on X-ray localizations, are significantly brighter and redder than those with an optical/NIR afterglow. Our spectroscopic campaign has resulted in 77 % now having redshift measurements, with a median redshift of 2.14 +- 0.18. TOUGH alone includes 17 detected z > 2 Swift GRB host galaxies suitable for individual and statistical studies. Seven hosts have detections of the Ly-alpha emission line and we can exclude an early indication that Ly-alpha emission is ubiquitous among GRB hosts, but confirm that Ly-alpha is stronger in GRB-selected galaxies than in flux-limited samples of Lyman break galaxies.
A preponderance of evidence links long-duration, soft-spectrum gamma-ray bursts (GRBs) with the death of massive stars. The observations of the GRB-supernova (SN) connection present the most direct evidence of this physical link. We summarize 30 GRB- SN associations and focus on five ironclad cases, highlighting the subsequent insight into the progenitors enabled by detailed observations. We also address the SN association (or lack thereof) with several sub-classes of GRBs, finding that the X-ray Flash (XRF) population is likely associated with massive stellar death whereas short-duration events likely arise from an older population not readily capable of producing a SN concurrent with a GRB. Interestingly, a minority population of seemingly long-duration, soft-spectrum GRBs show no evidence for SN-like activity; this may be a natural consequence of the range of Ni-56 production expected in stellar deaths.
We present an equilibrium statistical mechanical theory of collisionless self-gravitational systems with isotropic velocity distributions. Compared to existing standard theories, we introduce two changes: (1) the number of possible microstates is com puted in energy (orbit) space rather than phase space and (2) low occupation numbers are treated more appropriately than using Stirlings approximation. Combined, the two modifications predict that the relaxed parts of collisionless self-gravitating systems, such as dark-matter halos, have a differential energy distribution N(E) ~ [exp(phi_0 - E) - 1], dubbed DARKexp. Such systems have central power-law density cusps rho(r) ~ r^-1, which suggests a statistical mechanical origin of cusps in simulated dark-matter halos.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا