ترغب بنشر مسار تعليمي؟ اضغط هنا

219 - Jean Berard 2010
We consider a class of branching-selection particle systems on $R$ similar to the one considered by E. Brunet and B. Derrida in their 1997 paper Shift in the velocity of a front due to a cutoff. Based on numerical simulations and heuristic arguments, Brunet and Derrida showed that, as the population size $N$ of the particle system goes to infinity, the asymptotic velocity of the system converges to a limiting value at the unexpectedly slow rate $(log N)^{-2}$. In this paper, we give a rigorous mathematical proof of this fact, for the class of particle systems we consider. The proof makes use of ideas and results by R. Pemantle, and by N. Gantert, Y. Hu and Z. Shi, and relies on a comparison of the particle system with a family of $N$ independent branching random walks killed below a linear space-time barrier.
106 - Jean Berard 2008
We consider a branching-selection particle system on $Z$ with $N geq 1$ particles. During a branching step, each particle is replaced by two new particles, whose positions are shifted from that of the original particle by independently performing two random walk steps according to the distribution $p delta_{1} + (1-p) delta_{0}$, from the location of the original particle. During the selection step that follows, only the N rightmost particles are kept among the 2N particles obtained at the branching step, to form a new population of $N$ particles. After a large number of iterated branching-selection steps, the displacement of the whole population of $N$ particles is ballistic, with deterministic asymptotic speed $v_{N}(p)$. As $N$ goes to infinity, $v_{N}(p)$ converges to a finite limit $v_{infty}(p)$. The main result is that, for every $0<p<1/2$, as $N$ goes to infinity, the order of magnitude of the difference $v_{infty}(p)- v_{N}(p)$ is $log(N)^{-2}$. This is called Brunet-Derrida behavior in reference to the 1997 paper by E. Brunet and B. Derrida Shift in the velocity of a front due to a cutoff (see the reference within the paper), where such a behavior is established for a similar branching-selection particle system, using both numerical simulations and heuristic arguments.
We investigate the probabilities of large deviations for the position of the front in a stochastic model of the reaction $X+Y to 2X$ on the integer lattice in which $Y$ particles do not move while $X$ particles move as independent simple continuous t ime random walks of total jump rate $2$. For a wide class of initial conditions, we prove that a large deviations principle holds and we show that the zero set of the rate function is the interval $[0,v]$, where $v$ is the velocity of the front given by the law of large numbers. We also give more precise estimates for the rate of decay of the slowdown probabilities. Our results indicate a gapless property of the generator of the process as seen from the front, as it happens in the context of nonlinear diffusion equations describing the propagation of a pulled front into an unstable state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا