ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we present a catalogue of Giant Molecular Clouds (GMCs) in the Andromeda (M31) galaxy extracted from the Hershel Exploitation of Local Galaxy Andromeda (HELGA) dataset. GMCs are identified from the Herschel maps using a hierarchical sou rce extraction algorithm. We present the results of this new catalogue and characterise the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith et al (2012). 236 GMCs in the mass range 10^4-10^7 M_sol are identified, their cumulative mass distribution is found to be proportional to M^-1.45 in agreement with earlier studies. The GMCs appear to follow the same cloud mass to L_CO correlation observed in the Milky Way. However, comparison between this catalogue and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit suggesting that we are observing associations of GMCs. Following Gordon et al. (2006), we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.5 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8.9 deg to the GMCs not associated with either ring. Lastly, we comment upon the effects of deprojection on our results and investigate the effect different models for M31s inclination will have upon the projection of an unperturbed spiral arm system.
79 - J. M. Kirk 2013
The whole of the Taurus region (a total area of 52 sq. deg.) has been observed by the Herschel SPIRE and PACS instruments at wavelengths of 70, 160, 250, 350 and 500 {mu}m as part of the Herschel Gould Belt Survey. In this paper we present the first results from the part of the Taurus region that includes the Barnard 18 and L1536 clouds. A new source-finding routine, the Cardiff Source-finding AlgoRithm (CSAR), is introduced, which is loosely based on CLUMPFIND, but that also generates a structure tree, or dendrogram, which can be used to interpret hierarchical clump structure in a complex region. Sources were extracted from the data using the hierarchical version of CSAR and plotted on a mass-size diagram. We found a hierarchy of objects with sizes in the range 0.024-2.7 pc. Previous studies showed that gravitationally bound prestellar cores and unbound starless clumps appeared in different places on the mass-size diagram. However, it was unclear whether this was due to a lack of instrumental dynamic range or whether they were actually two distinct populations. The excellent sensitivity of Herschel shows that our sources fill the gap in the mass-size plane between starless and pre-stellar cores, and gives the first clear supporting observational evidence for the theory that unbound clumps and (gravitationally bound) prestellar cores are all part of the same population, and hence presumably part of the same evolutionary sequence (c.f. Simpson et al. 2011).
We present high angular resolution observations, taken with the Very Large Array (VLA) and Multiple Element Radio Linked Interferometer Network (MERLIN) radio telescopes, at 7mm and 4.4cm respectively, of the prototype Class 0 protostar VLA1623. At 7 mm we detect two sources (VLA1623A & B) coincident with the two previously detected components at the centre of this system. The separation between the two is 1.2arcsec, or ~170AU at an assumed distance of 139pc. The upper limit to the size of the source coincident with each component of VLA1623 is ~0.7arcsec, in agreement with previous findings. This corresponds to a diameter of ~100AU at an assumed distance of 139pc. Both components show the same general trend in their broadband continuum spectra, of a steeper dust continuum spectrum shortward of 7mm and a flatter spectrum longward of this. We estimate an upper limit to the VLA1623A disc mass of <0.13Msol and an upper limit to its radius of ~50AU. The longer wavelength data have a spectral index of alpha~0.6+/-0.3. This is too steep to be explained by optically thin free-free emission. It is most likely due to optically thick free-free emission. Alternatively, we speculate that it might be due to the formation of larger grains or planetesimals in the circumstellar disc. We estimate the mass of VLA1623B to be <0.15M$sol. We can place a lower limit to its size of ~30x7 AU, and an upper limit to its diameter of ~100AU. The longer wavelength data of VLA1623B also have a spectral index of alpha~0.6+/-0.3. The nature of VLA1623B remains a matter of debate. It could be a binary companion to the protostar, or a knot in the radio jet from VLA1623A.
We use the SPIRE Fourier-Transform Spectrometer (FTS) on-board the ESA Herschel Space Telescope to analyse the submillimetre spectrum of the Ultra-compact HII region G29.96-0.02. Spectral lines from species including 13CO, CO, [CI], and [NII] are det ected. A sparse map of the [NII] emission shows at least one other HII region neighbouring the clump containing the UCHII. The FTS spectra are combined with ISO SWS and LWS spectra and fluxes from the literature to present a detailed spectrum of the source spanning three orders of magnitude in wavelength. The quality of the spectrum longwards of 100 {mu}m allows us to fit a single temperature greybody with temperature 80.3pm0.6K and dust emissivity index 1.73pm0.02, an accuracy rarely obtained with previous instruments. We estimate a mass of 1500 Msol for the clump containing the HII region. The clumps bolometeric luminosity of 4 x 10^6 Lsol is comparable to, or slightly greater than, the known O-star powering the UCHII region.
98 - Jason M. Kirk 2009
We present Spitzer IRAC (~2 deg^2) and MIPS (~8 deg^2) observations of the Cepheus Flare which is associated with the Gould Belt, at an approximate distance of ~300 pc. Around 6500 sources are detected in all four IRAC bands, of which ~900 have MIPS 24 micron detections. We identify 133 YSO candidates using color-magnitude diagram techniques, a large number of the YSO candidates are associated with the NGC 7023 reflection nebula. Cross identifications were made with the Guide Star Catalog II and the IRAS Faint Source Catalog, and spectral energy distributions (SED) were constructed. SED modeling was conducted to estimate the degree of infrared excess. It was found that a large majority of disks were optically thick accreting disks, suggesting that there has been little disk evolution in these sources. Nearest-neighbor clustering analysis identified four small protostellar groups (L1228, L1228N, L1251A, and L1251B) with 5-15 members each and the larger NGC 7023 association with 32 YSO members. The star formation efficiency for cores with clusters of protostars and for those without clusters was found to be ~8% and ~1% respectively. The cores L1155, L1241, and L1247 are confirmed to be starless down to our luminosity limit of L_bol=0.06 L_sol.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا