ترغب بنشر مسار تعليمي؟ اضغط هنا

The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz. Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking for faint polarization signals in the Cosmic Microwave Background (CMB). The camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at 90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at 150 GHz. We present the design, dark characterization, and in-lab optical properties of the 150 GHz camera modules. The modules consist of photolithographed arrays of TES polarimeters coupled to silicon platelet arrays of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In addition to mounting hardware and RF shielding, each module also contains a set of passive readout electronics for digital frequency-domain multiplexing. A single module, therefore, is fully functional as a miniature focal plane and can be tested independently. Across the modules tested before deployment, the detectors average a critical temperature of 478 mK, normal resistance R_N of 1.2 Ohm, unloaded saturation power of 22.5 pW, (detector-only) optical efficiency of ~ 90%, and have electrothermal time constants < 1 ms in transition.
To better constrain models of cool core galaxy cluster formation, we have used X-ray observations taken from the Chandra and ROSAT archives to examine the properties of cool core and non-cool core clusters, especially beyond the cluster cores. We pro duced X-ray images, surface brightness profiles, and hardness ratio maps of 30 nearby rich Abell clusters (17 cool cores and 13 non-cool cores). We show that the use of double beta-models with cool core surface brightness profiles and single beta-models for non-cool core profiles yield statistically significant differences in the slopes (i.e., beta values) of the outer surface brightness profiles, but similar cluster core radii, for the two types of clusters. Hardness ratio profiles as well as spectroscopically-fit temperatures suggest that non-cool core clusters are warmer than cool core clusters of comparable mass beyond the cluster cores. We compared the properties of these clusters with the results from analogously reduced simulations of 88 numerical clusters created by the AMR Enzo code. The simulated surface brightness profiles have steeper beta-model fits in the outer cluster regions for both cool cores and non-cool cores, suggesting additional ICM heating is required compared to observed cluster ICMs. Temperature and surface brightness profiles reveal that the simulated clusters are over-cooled in their cores. As in the observations, however, simulated hardness ratio and temperature profiles indicate that non-cool core clusters are warmer than cool core clusters of comparable mass far beyond the cluster cores. The general similarities between observations and simulations support a model described in Burns et al. 2008 suggesting that non-cool core clusters suffered early major mergers destroying nascent cool cores.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا