ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedhorn-coupled TES polarimeter camera modules at 150 GHz for CMB polarization measurements with SPTpol

173   0   0.0 ( 0 )
 نشر من قبل Jason Henning
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz. Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking for faint polarization signals in the Cosmic Microwave Background (CMB). The camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at 90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at 150 GHz. We present the design, dark characterization, and in-lab optical properties of the 150 GHz camera modules. The modules consist of photolithographed arrays of TES polarimeters coupled to silicon platelet arrays of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In addition to mounting hardware and RF shielding, each module also contains a set of passive readout electronics for digital frequency-domain multiplexing. A single module, therefore, is fully functional as a miniature focal plane and can be tested independently. Across the modules tested before deployment, the detectors average a critical temperature of 478 mK, normal resistance R_N of 1.2 Ohm, unloaded saturation power of 22.5 pW, (detector-only) optical efficiency of ~ 90%, and have electrothermal time constants < 1 ms in transition.



قيم البحث

اقرأ أيضاً

We describe the design and measurement of feedhorn-coupled, transition-edge sensor (TES) polarimeters with two passbands centered at 220 GHz and 280 GHz, intended for observations of the cosmic microwave background. Each pixel couples polarized light in two linear polarizations by use of a planar orthomode transducer and senses power via four TES bolometers, one for each band in each linear polarization. Previous designs of this detector architecture incorporated passbands from 27 GHz to 220 GHz; we now demonstrate this technology at frequencies up to 315 GHz. Observational passbands are defined with an on-chip diplexer, and Fourier-transform-spectrometer measurements are in excellent agreement with simulations. We find coupling from feedhorn to TES bolometer using a cryogenic, temperature-controlled thermal source. We determine the optical efficiency of our device is $eta$ = 77%$pm$6% (75%$pm$5%) for 220 (280) GHz, relative to the designed passband shapes. Lastly, we compare two power-termination schemes commonly used in wide-bandwidth millimeter-wave polarimeters and find equal performance in terms of optical efficiency and passband shape.
We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflati on, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16$times$16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7$^{circ}$ FHWM Gaussian-shaped beams with $<$1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 $times$ 10$^{-17}$ W/$sqrt{mathrm{Hz}}$, consistent with the phonon noise prediction.
SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an ar cminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB B-mode polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inflationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of inflation. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: single-moded feedhorns with low cross-polarization, bolometer pairs well-matched to difference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections.
Next generation cosmic microwave background (CMB) polarization anisotropy measurements will feature focal plane arrays with more than 600 millimeter-wave detectors. We make use of high-resolution photolithography and wafer-scale etch tools to build p lanar arrays of corrugated platelet feeds in silicon with highly symmetric beams, low cross-polarization and low side lobes. A compact Au-plated corrugated Si feed designed for 150 GHz operation exhibited performance equivalent to that of electroformed feeds: ~-0.2 dB insertion loss, <-20 dB return loss from 120 GHz to 170 GHz, <-25 dB side lobes and <-23 dB cross-polarization. We are currently fabricating a 50 mm diameter array with 84 horns consisting of 33 Si platelets as a prototype for the SPTpol and ACTpol telescopes. Our fabrication facilities permit arrays up to 150 mm in diameter.
We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize p lanar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا