ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetooptical properties of (Ga,Mn)N layers containing various concentrations of Fe-rich nanocrystals embedded in paramagnetic (Ga,Fe)N layers are reported. Previous studies of such samples demonstrated that magnetization consists of a paramagnetic contribution due to substitutional diluted Fe ions as well as of ferromagnetic and antiferromagnetic components originating from Fe-rich nanocrystals, whose relative abundance can be controlled by the grow conditions. The nanocrystals are found to broaden and to reduce the magnitude of the excitonic features. However, the ferromagnetic contribution, clearly seen in SQUID magnetometry, is not revealed by magnetic circular dichroism (MCD). Possible reasons for differences in magnetic response determined by MCD and SQUID measurements are discussed.
The origin of the emission within the optical mode of a coupled quantum dot-micropillar system is investigated. Time-resolved photoluminescence is performed on a large number of deterministically coupled devices in a wide range of temperature and det uning. The emission within the cavity mode is found to exhibit the same dynamics as the spectrally closest quantum dot state. Our observations indicate that fast dephasing of the quantum dot state is responsible for the emission within the cavity mode. An explanation for recent photon correlation measurements reported on similar systems is proposed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا