ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the emission within the cavity mode of coupled quantum dot-cavity systems

267   0   0.0 ( 0 )
 نشر من قبل Jan Suffczynski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the emission within the optical mode of a coupled quantum dot-micropillar system is investigated. Time-resolved photoluminescence is performed on a large number of deterministically coupled devices in a wide range of temperature and detuning. The emission within the cavity mode is found to exhibit the same dynamics as the spectrally closest quantum dot state. Our observations indicate that fast dephasing of the quantum dot state is responsible for the emission within the cavity mode. An explanation for recent photon correlation measurements reported on similar systems is proposed.



قيم البحث

اقرأ أيضاً

We experimentally study the tunability of the cooperativity in coupled spin--cavity systems by changing the magnetic state of the spin system via an external control parameter. As model system, we use the skyrmion host material Cu$_2$OSeO$_3$ coupled to a microwave cavity resonator. In the different magnetic phases we measure a dispersive coupling between the resonator and the magnon modes and model our results by using the input--output formalism. Our results show a strong tunability of the normalized coupling rate by magnetic field, allowing us to change the magnon--photon cooperativity from 1 to 60 at the phase boundaries of the skyrmion lattice state.
247 - S. Hughes , P. Yao , F. Milde 2011
We present a medium-dependent quantum optics approach to describe the influence of electron-acoustic phonon coupling on the emission spectra of a strongly coupled quantum-dot cavity system. Using a canonical Hamiltonian for light quantization and a p hoton Green function formalism, phonons are included to all orders through the dot polarizability function obtained within the independent Boson model. We derive simple user-friendly analytical expressions for the linear quantum light spectrum, including the influence from both exciton and cavity-emission decay channels. In the regime of semiconductor cavity-QED, we study cavity emission for various exciton-cavity detunings and demonstrate rich spectral asymmetries as well as cavity-mode suppression and enhancement effects. Our technique is nonperturbative, and non-Markovian, and can be applied to study photon emission from a wide range of semiconductor quantum dot structures, including waveguides and coupled cavity arrays. We compare our theory directly to recent and apparently puzzling experimental data for a single site-controlled quantum dot in a photonic crystal cavity and show good agreement as a function of cavity-dot detuning and as a function of temperature.
We report on a combined experimental and theoretical investigation into the normal modes of an all-fiber coupled cavity-quantum-electrodynamics system. The interaction between atomic ensembles and photons in the same cavities, and that between the ph otons in these cavities and the photons in the fiber connecting these cavities, generates five non-degenerate normal modes. We demonstrate our ability to excite each normal mode individually. We study particularly the `cavity dark mode, in which the two cavities coupled directly to the atoms do not exhibit photonic excitation. Through the observation of this mode, we demonstrate remote excitation and nonlocal saturation of atoms.
We investigate the non-classical states of light that emerge in a microwave resonator coupled to a periodically-driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a therma l state at the temperature of the surrounding substrate with a chemical potential given by a harmonic of the drive frequency. Away from these thermal regions we find regions of gain and loss, where the system can lase, or regions where the DQD acts as a single-photon source. These effects are observable in current devices and have broad utility for quantum optics with microwave photons.
82 - K. Jurgens , F. Lengers , T. Kuhn 2020
Semiconductor quantum dots in photonic cavities are strongly coupled light-matter systems with prospective applications in optoelectronic devices and quantum information processing. Here we present a theoretical study of the coupled exciton--light fi eld dynamics of a planar quantum dot ensemble, treated as two-level systems, embedded in a photonic cavity modeled by Maxwells equations. When excited by coupling an external short laser pulse into the cavity, we find an exciton-polariton-like behavior for weak excitation and Rabi oscillations for strong excitation with a sharp transition between these regimes. In the transition region we find highly non-linear dynamics involving high harmonics of the fundamental oscillation. We perform a numerical study based on the Finite-Difference-Time-Domain method for the solution of Maxwells equations coupled to Bloch equations for the quantum dots and also derive an analytical model to describe the coupled cavity-quantum dot system, which allows us to describe the light field dynamics in terms of a Newton-like dynamics in an effective anharmonic potential. From the shape of this potential combined with the initial conditions the transition can be well understood. The model is then extended to a broadened ensemble of quantum dots. For weak excitation the polariton spectrum broadens and the lines slightly shift, however, the sharp transition to the Rabi oscillation regime is still present. Furthermore, we find a second, lower threshold with additional lines in the spectra which can be traced back to Rabi oscillations driven by the polariton modes. Our approach provides new insights in the dynamics of both quantum dot and light field in the photonic structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا