ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of magic-angle twisted trilayer graphene (tTLG) adds a new twist to the family of graphene moire. The additional graphene layer unlocks a series of intriguing properties in the superconducting phase, such as the violation of Pauli limit and re-entrant superconductivity at large in-plane magnetic field. In this work, we integrate magic-angle tTLG into a double-layer structure to study the superconducting phase. Utilizing proximity screening from the adjacent metallic layer, we examine the stability of the superconducting phase and demonstrate that Coulomb repulsion competes against the mechanism underlying Cooper pairing. Furthermore, we use a combination of transport and thermodynamic measurements to probe the isospin order, which shows that the isospin configuration at half moire filling, and for the nearby fermi surface, is spin-polarized and valley-unpolarized. In addition, we show that valley isospin plays a dominating role in the Pomeranchuk effect, whereas the spin degree of freedom is frozen, which indicates small valley isospin stiffness and large spin stiffness in tTLG. Taken together, our findings provide important constraints for theoretical models aiming to understand the nature of superconductivity. A possible scenario is that electron-phonon coupling stabilizes a superconducting phase with a spin-triplet, valley singlet order parameter.
Strong electron correlation and spin-orbit coupling (SOC) provide two non-trivial threads to condensed matter physics. When these two strands of physics come together, a plethora of quantum phenomena with novel topological order have been predicted t o emerge in the correlated SOC regime. In this work, we examine the combined influence of electron correlation and SOC on a 2-dimensional (2D) electronic system at the atomic interface between magic-angle twisted bilayer graphene (tBLG) and a tungsten diselenide (WSe) crystal. In such a structure, strong electron correlation within the moire flatband stabilizes correlated insulating states at both quarter and half-filling, whereas SOC transforms these Mott-like insulators into ferromagnets, evidenced by robust anomalous Hall effect with hysteretic switching behavior. The coupling between spin and valley degrees of freedom is unambiguously demonstrated as the magnetic order is shown to be tunable with an in-plane magnetic field, or a perpendicular electric field. In addition, we examine the influence of SOC on the isospin order and stability of superconductivity. Our findings establish an efficient experimental knob to engineer topological properties of moire bands in twisted bilayer graphene and related systems.
The ability to control the strength of interaction is essential for studying quantum phenomena emerging from a system of correlated fermions. For example, the isotope effect illustrates the effect of electron-phonon coupling on superconductivity, pro viding an important experimental support for the BCS theory. In this work, we report a new device geometry where the magic-angle twisted bilayer graphene (tBLG) is placed in close proximity to a Bernal bilayer graphene (BLG) separated by a 3 nm thick barrier. Using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effect on the insulating and superconducting states: as Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity is enhanced. Out results demonstrate the ability to directly probe the role of Coulomb interaction in magic-angle twisted bilayer graphene. Most importantly, the effect of Coulomb screening points toward electron-phonon coupling as the dominant mechanism for Cooper pair formation, and therefore superconductivity, in magic-angle twisted bilayer graphene.
87 - J.I.A. Li , Q. Shi , Y. Zeng 2019
Pairing interaction between fermionic particles leads to composite Bosons that condense at low temperature. Such condensate gives rise to long range order and phase coherence in superconductivity, superfluidity, and other exotic states of matter in t he quantum limit. In graphene double-layers separated by an ultra-thin insulator, strong interlayer Coulomb interaction introduces electron-hole pairing across the two layers, resulting in a unique superfluid phase of interlayer excitons. In this work, we report a series of emergent fractional quantum Hall ground states in a graphene double-layer structure, which is compared to an expanded composite fermion model with two-component correlation. The ground state hierarchy from bulk conductance measurement and Hall resistance plateau from Coulomb drag measurement provide strong experimental evidence for a sequence of effective integer quantum Hall effect states for the novel two-component composite fermions (CFs), where CFs fill integer number of effective LLs (Lambda-level). Most remarkably, a sequence of incompressible states with interlayer correlation are observed at half-filled Lambda-levels, which represents a new type of order involving pairing states of CFs that is unique to graphene double-layer structure and beyond the conventional CF model.
We report fabrication of graphene devices in a Corbino geometry consisting of concentric circular electrodes with no physical edge connecting the inner and outer electrodes. High device mobility is realized using boron nitride encapsulation together with a dual-graphite gate structure. Bulk conductance measurement in the quantum Hall effect (QHE) regime outperforms previously reported Hall bar measurements, with improved resolution observed for both the integer and fractional QHE states. We identify apparent phase transitions in the fractional sequence in both the lowest and first excited Landau levels (LLs) and observed features consistent with electron solid phases in higher LLs.
102 - J.I.A.Li , C. Tan , S. Chen 2017
The multi-component nature of bilayer graphene (BLG), together with the ability to controllably tune between the various ground state orders, makes it a rich system in which to explore interaction driven phenomena. In the fractional quantum Hall effe ct (FQHE) regime, the unique Landau level spectrum of BLG is anticipated to support a non-Abelian even-denominator state that is tunable by both electric and magnetic fields. However, observation of this state, which is anticipated to be stronger than in conventional systems, has been conspicuously difficult. Here we report transport measurements of a robust even denominator FQHE in high-mobility, dual gated BLG devices. We confirm that the stability of the energy gap can be sensitively tuned and map the phase diagram. Our results establish BLG as a dynamic new platform to study topological ground states with possible non-Abelian excitations.
Spatially indirect excitons can be created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite Boson. Because there is no recombination pathway such excitons are long lived making them ac cessible to transport studies. Moreover, the ability to independently tune both the intralayer charge density and interlayer electron-hole separation provides the capability to reach the low-density, strongly interacting regime where a BEC-like phase transition into a superfluid ground state is anticipated. To date, transport signatures of the superfluid condensate phase have been seen only in quantum Hall bilayers composed of double well GaAs heterostructures. Here we report observation of the exciton condensate in the quantum Hall effect regime of double layer structures of bilayer graphene. Correlation between the layers is identified by quantized Hall drag appearing at matched layer densities, and the dissipationless nature of the phase is confirmed in the counterflow geometry. Independent tuning of the layer densities and interlayer bias reveals a selection rule involving both the orbital and valley quantum number between the symmetry-broken states of bilayer graphene and the condensate phase, while tuning the layer imbalance stabilizes the condensate to temperatures in excess of 4K. Our results establish bilayer graphene quantum wells as an ideal system in which to study the rich phase diagram of strongly interacting Bosonic particles in the solid state.
Coulomb drag between parallel quantum wells provides a uniquely sensitive measurement of electron correlations since the drag response depends on interactions only. Recently it has been demonstrated that a new regime of strong interactions can be acc essed for devices consisting of two monlolayer graphene (MLG) crystals, separated by few layer hexagonal boron-nitride. Here we report measurement of Coulomb drag in a double bilayer graphene (BLG) stucture, where the interaction potential is anticipated to be yet further enhanced compared to MLG. At low temperatures and intermediate densities a new drag response with inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double MLG. We demonstrate that by varying the device aspect ratio the negative drag component can be suppressed and a response showing excellent agreement with the density and temperature dependance predicted for momentum drag in double BLG is found. Our results pave the way for pursuit of emergent phases in strongly interacting bilayers, such as the exciton condensate.
It has been shown that the relative stabilities of various superfluid states of 3He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on 3He im bibed within the aerogel. We identified A and B-phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results we infer that the B-phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A-phase.
In recent work it was shown that new anisotropic p-wave states of superfluid 3He can be stabilized within high porosity silica aerogel under uniform positive strain [1]. In contrast, the equilibrium phase in an unstrained aerogel, is the isotropic su perfluid B-phase [2]. Here we report that this phase stability depends on the sign of the strain. For negative strain of ~20% achieved by compression, the B-phase can be made more stable than the anisotropic A-phase resulting in a tricritical point for A, B, and normal phases with a critical field of ~100 mT. From pulsed NMR measurements we identify these phases and the orientation of the angular momentum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا