ترغب بنشر مسار تعليمي؟ اضغط هنا

Runaway electrons, which are generated in a plasma where the induced electric field exceeds a certain critical value, can reach very high energies in the MeV range. For such energetic electrons, radiative losses will contribute significantly to the m omentum space dynamics. Under certain conditions, due to radiative momentum losses, a non-monotonic feature - a bump - can form in the runaway electron tail, creating a potential for bump-on-tail-type instabilities to arise. Here we study the conditions for the existence of the bump. We derive an analytical threshold condition for bump appearance and give an approximate expression for the minimum energy at which the bump can appear. Numerical calculations are performed to support the analytical derivations.
The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code [J. Candy a nd E. Belli, General Atomics Report GA-A26818 (2011)]. In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by $mathbf{E}timesmathbf{B}$ rotation shear.
The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter, $Delta^prime$. In the presence of a steep monotonic current gradient, $Delta^prime$ becomes a function of a parameter, $sigma_0$, characterising the ratio of the maximum current gradient to magnetic shear, and $x_s$, characterising the separation of the resonant surface from the maximum of the current gradient. In equilibria containing a current spike, so that there is a non-monotonic current profile, $Delta^prime$ also depends on two parameters: $kappa$, related to the ratio of the curvature of the current density at its maximum to the magnetic shear, and $x_s$, which now represents the separation of the resonance from the point of maximum current density. The relation of our results to earlier studies of tearing modes and to recent gyro-kinetic calculations of current driven instabilities, is discussed, together with potential implications for the stability of the tokamak pedestal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا