ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck has mapped the microwave sky in nine frequency bands between 30 and 857 GHz in temperature and seven bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive a consistent set of full-sky astrophysical component maps. For the temperature analysis, we combine the Planck observations with the 9-year WMAP sky maps and the Haslam et al. 408 MHz map to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided with angular resolutions varying between 7.5 arcmin and 1 deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4 uK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analog-to-digital conversion, and very long time constant corrections, all of which are expected to improve in the near future.
We study four particularly bright polarized compact objects (Tau A, Virgo A, 3C273 and Fornax A) in the 7-year WMAP sky maps, with the goal of understanding potential systematics involved in estimation of foreground spectral indices. We estimate the spectral index, the polarization angle, the polarization fraction and apparent size and shape of these objects when smoothed to a nominal resolution of 1 degree FWHM. Second, we compute the spectral index as a function of polarization orientation, alpha. Because these objects are approximately point sources with constant polarization angle, this function should be constant in the absence of systematics. However, computing it for the K- and Ka-band WMAP data we find strong index variations for all four sources. For Tau A, we find a spectral index beta=-2.59+-0.03 for alpha=30 degrees, and beta=-2.03+-0.01 for alpha=50 degrees. On the other hand, the spectral index between Ka and Q band is found to be stable. A simple elliptical Gaussian toy model with parameters matching those observed in Tau A reproduces the observed signal, and shows that the spectral index is in particular sensitive to the detector polarization angle. Based on these findings, we first conclude that estimation of spectral indices with the WMAP K-band polarization data at 1 degree scales is not robust. Second, we note that these issues may be of concern for ground-based and sub-orbital experiments that use the WMAP polarization measurements of Tau A for calibration of gain and polarization angles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا