ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of systematics on polarized spectral indices

27   0   0.0 ( 0 )
 نشر من قبل Ingunn Kathrine Wehus
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study four particularly bright polarized compact objects (Tau A, Virgo A, 3C273 and Fornax A) in the 7-year WMAP sky maps, with the goal of understanding potential systematics involved in estimation of foreground spectral indices. We estimate the spectral index, the polarization angle, the polarization fraction and apparent size and shape of these objects when smoothed to a nominal resolution of 1 degree FWHM. Second, we compute the spectral index as a function of polarization orientation, alpha. Because these objects are approximately point sources with constant polarization angle, this function should be constant in the absence of systematics. However, computing it for the K- and Ka-band WMAP data we find strong index variations for all four sources. For Tau A, we find a spectral index beta=-2.59+-0.03 for alpha=30 degrees, and beta=-2.03+-0.01 for alpha=50 degrees. On the other hand, the spectral index between Ka and Q band is found to be stable. A simple elliptical Gaussian toy model with parameters matching those observed in Tau A reproduces the observed signal, and shows that the spectral index is in particular sensitive to the detector polarization angle. Based on these findings, we first conclude that estimation of spectral indices with the WMAP K-band polarization data at 1 degree scales is not robust. Second, we note that these issues may be of concern for ground-based and sub-orbital experiments that use the WMAP polarization measurements of Tau A for calibration of gain and polarization angles.

قيم البحث

اقرأ أيضاً

Using Planck polarization data, we search for and constrain spatial variations of the polarized dust foreground for cosmic microwave background (CMB) observations, specifically in its spectral index, $beta_d$. Failure to account for such variations w ill cause errors in the foreground cleaning that propagate into errors on cosmological parameter recovery from the cleaned CMB map. It is unclear how robust prior studies of the Planck data which constrained $beta_d$ variations are due to challenges with noise modeling, residual systematics, and priors. To clarify constraints on $beta_d$ and its variation, we employ two pixel space analyses of the polarized dust foreground at $>3.7^{circ}$ scales on $approx 60%$ of the sky at high Galactic latitudes. A template fitting method, which measures $beta_d$ over three regions of $approx 20%$ of the sky, does not find significant deviations from an uniform $beta_d = 1.55$, consistent with prior Planck determinations. An additional analysis in these regions, based on multifrequency fits to a dust and CMB model per pixel, puts limits on $sigma_{beta_d}$, the Gaussian spatial variation in $beta_d$. At the highest latitudes, the data support $sigma_{beta_d}$ up to $0.45$, $0.30$ at mid-latitudes, and $0.15$ at low-latitudes. We also demonstrate that care must be taken when interpreting the current Planck constraints, $beta_d$ maps, and noise simulations. Due to residual systematics and low dust signal to noise at high latitudes, forecasts for ongoing and future missions should include the possibility of large values of $sigma_{beta_d}$ as estimated in this paper, based on current polarization data.
We constrain the spectral index of polarized synchrotron emission, $beta_s$, by correlating the recently released 2.3 GHz S-Band Polarization All Sky Survey (S-PASS) data with the 23 GHz 9-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We subdivide the S-PASS field, which covers the southern ecliptic hemisphere, into 95 $15^{circ}times15^{circ}$ regions and estimate the spectral index of polarized synchrotron emission within each region using a simple but robust T-T plot technique. Three differe
101 - Luke Jew 2019
We present an estimate of the polarized spectral index between the Planck 30 and 44 GHz surveys in $3.7^circ$ pixels across the entire sky. We use an objective reference prior that maximises the impact of the data on the posterior and multiply this b y a maximum entropy prior that includes information from observations in total intensity by assuming a polarization fraction. Our parametrization of the problem allows the reference prior to be easily determined and also provides a natural method of including prior information. The spectral index map is consistent with those found by others between surveys at similar frequencies. Across the entire sky we find an average temperature spectral index of $-2.99pm0.03(pm1.12)$ where the first error term is the statistical uncertainty on the mean and the second error term (in parentheses) is the extra intrinsic scatter in the data. We use a clustering algorithm to identify pixels with actual detections of the spectral index. The average spectral index in these pixels is $-3.12pm0.03(pm0.64)$ and then when also excluding pixels within $10^circ$ of the Galactic plane we find $-2.92(pm0.03)$. We find a statistically significant difference between the average spectral indices in the North and South Fermi bubbles. Only including pixels identified by the clustering algorithm, the average spectral index in the southern bubble is $-3.00pm0.05(pm0.35)$, which is similar to the average across the whole sky. In the northern bubble we find a much harder average spectral index of $-2.36pm0.09(pm0.63)$. Therefore, if the bubbles are features in microwave polarization they are not symmetric about the Galactic plane.
The tomographic AP method is so far the best method in separating the Alcock-Paczynski (AP) signal from the redshift space distortion (RSD) effects and deriving powerful constraints on cosmological parameters using the $lesssim40h^{-1} rm Mpc$ cluste ring region. To guarantee that the method can be easily applied to the future large scale structure (LSS) surveys, we study the possibility of estimating the systematics of the method using fast simulation method. The major contribution of the systematics comes from the non-zero redshift evolution of the RSD effects, which is quantified by $hatxi_{Delta s}(mu,z)$ in our analysis, and estimated using the BigMultidark exact N-body simulation and approximate COLA simulation samples. We find about 5%/10% evolution when comparing the $hatxi_{Delta s}(mu,z)$ measured as $z=0.5$/$z=1$ to the measurements at $z=0$. We checked the inaccuracy in the 2pCFs computed using COLA, and find it 5-10 times smaller than the intrinsic systematics of the tomographic AP method, indicating that using COLA to estimate the systematics is good enough. Finally, we test the effect of halo bias, and find $lesssim$1.5% change in $hatxi_{Delta s}$ when varying the halo mass within the range of $2times 10^{12}$ to $10^{14}$ $M_{odot}$. We will perform more studies to achieve an accurate and efficient estimation of the systematics in redshift range of $z=0-1.5$.
Galaxy clusters are a recent cosmological probe. The precision and accuracy of the cosmological parameters inferred from these objects are affected by the knowledge of cluster physics, entering the analysis through the mass-observable scaling relatio ns, and the theoretical description of their mass and redshift distribution, modelled by the mass function. In this work, we forecast the impact of different modelling of these ingredients for clusters detected by future optical and near-IR surveys. We consider the standard cosmological scenario and the case with a time-dependent equation of state for dark energy. We analyse the effect of increasing accuracy on the scaling relation calibration, finding improved constraints on the cosmological parameters. This higher accuracy exposes the impact of the mass function evaluation, which is a subdominant source of systematics for current data. We compare two different evaluations for the mass function. In both cosmological scenarios, the use of different mass functions leads to biases in the parameter constraints. For the $Lambda$CDM model, we find a $1.6 , sigma$ shift in the $(Omega_m,sigma_8)$ parameter plane and a discrepancy of $sim 7 , sigma$ for the redshift evolution of the scatter of the scaling relations. For the scenario with a time-evolving dark energy equation of state, the assumption of different mass functions results in a $sim 8 , sigma$ tension in the $w_0$ parameter. These results show the impact, and the necessity for a precise modelling, of the interplay between the redshift evolution of the mass function and of the scaling relations in the cosmological analysis of galaxy clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا